align="justify">
Құрылымы және қызметі жағынан
эукариоттар мен прокариоттардың
рибосомалары өте ұқсас. Олардың
әрқайсысы - үлкен және кіші
екі суббірліктен тұрады. Эукариоттық
рибосомаларда, массасының жартысына
жуығы РНҚ-дан (рРНҚ) тұрады; кіші
суббірлігі рибосомалық РНҚ-ның
(рРНҚ) бір молекуласы мөлшермен
33 әртүрлі рибосомалық белоктармен,
ал үлкені 40-тан аса әртүрлі
рибосомалық белоктармен, рРНҚ-ның
үш молекуласымен байланысқан.
Прокариоттық рибосомалар кішірек,
және компоненттерінің (құрамы) саны
аз болады.
Екі типтегі рибосомаларда да
өсіп келе жатқан полипептидтік
тізбекті және иРНҚ молекуласын
ұстап тұратын өзекшелер бар.
Өзекшелердің біріншісінің ұзындығына
30 амин қышқылы, ал екіншісіне
РНҚ-ның 35 жуық нуклеотидтері
сияды. Рибосома адымдап иРНҚ-ның тізбегімен
жылжиды. Рибосомада тРНҚ молекуласын
байланыстыратын екі әртүрлі учаске бар.
Біреуі тРНҚ молекуласын, өсіп келе жатқан
полипептидтік тізбек бойында, сондықтан
оны пептидил-тРНҚ
байланыстырушы учаскесі
немесе Р-учаскесі
деп атайды. Екіншісі амин қышқылымен
жүктелген, жаңадан келген тРНҚ молекуласын
ұстау үшін жұмыс жасайды; осы аминоацил-тРНҚ-ны
байланыстырушы учаскесі
немесе А-учаскесі
деп атайды. Екі учаскеге де тРНҚ молекуласы
қатты бекуі, тек оның антикодоны иРНҚ-дағы
оған комплементарлы кодонмен жұптасқанда
мүмкін болады. А-
және Р учаскелері бір біріне өте жақын
орналасқан, сондықтан олармен байланықан
екі тРНҚ молекуласы иРНҚ молекуласында
екі көршілес кодондармен жұптасады.[1]
Рибосомада полипептидтік тізбектің
өсу (элонгация) процесін үш
түрлі жеке сатылардан тұратын
цикл ретінде қарауға болады.
Бірінші сатыда аминоацил-тРНҚ
молекуласы рибосоманың бос А-учаскесімен
байланысады, ол бос емес Р-учаскесіне
жанасқан; байланыс антикодонның
нуклеотидтерінің А-учаскесінде
орналасқан иРНҚ-ның үш нуклеотидімен
жұптасуы арқылы жүреді. Екінші
сатыда полипептидтік тізбектің
карбоксилдік ұшы Р-учаскесінде
тРНҚ-дан бөлініп, А-учаскесіндегі
тРНҚ молекуласына қосылған амин
қышқылымен пептидтік байланыс
пептидилтрансфераза ферментімен
катализденеді. Үшінші сатыда жаңа пептидил-тРНҚ
рибосоманың Р-учаскесіне көшеді, ол кезде
рибосома иРНҚ молекуласының бойымен
дәл үш нуклеотидке жылжиды. Бұл кезең
энергияны көп қажет етеді; оның козғаушы
күші бір катар конформациялық өзгерістер,
олар рибосомалық молекулалардың бірінде,
онымен байланысты GTP
молекуласының гидролизімен индукцияланады.
Транслокация (орын ауыстыру) процесі
- 3-сатыны құрайды, сондықтан 3-ші
саты біткесін бос тұрған А-учаскесі
кезекте амин қышқылы бар жаңа
тРНҚ молекуласын қабылдайды, яғни цикл
қайтадан басталады. Бактериялық клеткада
полипептидтік тізбектің элонгациясының
бір циклы, қалыпты жағдайда 1/20
с, сондықтан көлемі 400 амин қышқылынан
тұратын орташа белоктың синтезі мөлшермен
20 с жүреді.
Клетканың көп бөлігінде барлық
биосинтетикалық процестермен салыстырғанда
- белок синтезі ең энергияны
көп қажет ететін. Жаңа пептидтік
байланыстардың әрқайсысы түзілгенде
төрт жоғары энергетикалық фосфаттық
байланыстар ыдырайды. Олардың екеуі
тРНҚ-ға амин қышқылын жалғауға,
ал екеуі - рибосомада өтетін
екі циклдегі реакцияларға жұмсалады;
циклдың 1 сатысында аминоацил-тРНҚ-ны
байланыстыру және 3-сатыда рибосоманың
транслокациялануында пайдаланылады.[1]
3.Белоктардың
биосинтезі және оны
реттеу.
Белоктардың
синтезделуі негізінен екі кезеңнен
тұрады:
1. Ядролық
кезең немесе транскрипция. Мұнда ДНҚ
қос тізбегінің біреуінің комплементарлы
көшірмесі болып табылатын и-РНҚ синтезі
жүреді. Осы жолмен синтезделген и-РНҚ
әрі қарай синтезделетін белоктың негізі
болып табылады.
2. Цитоплазмалық
кезең яғни трансляция. Цитоплазмада
4 әріптік генетикалық информацияның
триплеттік кодтың көмегімен
20 әріптік амин қышқылдарынан
тұратын белоктың тізбегіне айналу
процесі жүреді. Сонымен бірге
онда белоктардың үшінші, төртінші
реттік құрылысының кеңістікте
орын алуы және олардың клетка
метаболизміне тікелей қатынасуына
мүмкіндік туады. Осы айтылған
әрбір кезеңге қажет өзінің
ферменттері, факторлары, индукторларымен
тежеушілері болады. Клеткасыз жүйелер
тіршілігін зерттеу осы факторларды
ашуға мүмкіндік туғызды. Бұл қандай
факторлар?
1. Белоктардың
синтезі рибосомада жүреді;
2. Белоктардың
синтезі үшін қажет энергия
АТФ және ГТФ арқылы қамтамасыз
етіледі, айта кету керек, бір
пептидтік байланыс түзілу үшін
4 макроэргтік қосылыс қажет;
3. 20-ға
жуық амин қышқылдары;
4. 20-дан
астам аминоацил - т-РНҚ синтетаза
ферменті;
5. 20-ға
жуық т-РНҚ;
6.
Мg2+ ионы, конц 5-8 тМ
қажет.
Сонымен
барлығы 200-ге жуық макромолекулалар,
белоктық факторлар қажет:
Трансляция
- цитоплазмада жүретін кезең. Бұл кезең
кезінде тек қана 4 әріптік нуклеотидтік
тілдің 20 әріптік аминқьшқылының тілге
аударылуы ғана жүріп қоймайды, сонымен
қатар амин қышқылдарының белоктық тізбектегі
өз орнын табу мәселесі шешіледі. Трансляцияның
өзі 5 кезеңнен тұрады.[2]
Трансляцияның
І-ші кезеңі: амин қышқылдарының активтелуі.
Бұл кезеңге қажетті заттар: 20 амин қышқылы,
АТФ, Мg2+, 20т-РНҚ, 20 аминоацил -т-РНҚ
- синтетаза ферменті. Бұл кезең жиырмадан
астам аминоацил - т-РНҚ-синтетаза ферментінің
қатысуымен өтеді. Бұлар айрықша талғамдылық
көрсететін ферменттер, атап айтқанда
осы ферменттің көмегімен амин қышқылы
өзіне тән т-РНҚ таныса, т-РНҚ өзіне тән
амин қышқылдарын таба алады. Сондықтан
бұл ферментті "адаптор" деп те атайды.
Аминоацил-т-РНҚ-синтетаза ферменттерінің
осындай айрықша қасиет көрсетуіне т-РНҚ-ның
құрылысының өзгешілігі жағдай жасайды.
[2]
Оның құрылысы үйеңкі жапырағына
ұқсас келеді. Міне осындай құрылысы
бар І20-ға жуық т-РНҚ белгілі.
Сонымен қатар аминоацил-т-РНҚ-синтетаза
ферментінің бір ерекшелігі, олар
өздері жіберіп алған қателігін
кезінде жөндеп отырады.
Трансляцияның 2-ші кезеңі - полипептидтік
тізбектің инициациясы. Бұл кезеңге
қажетті компоненттер: и-РНҚ; белок
синтезін бастаушы кодон /АУГ/.
Бұл кодон барлық жағдайда
метионинге немесе формилметионинге
тән болады; N -формилметиониннің
т-РНҚ-сы; үлкен және кіші суббірліктер;
ГТФ; Мg2+-иондары; белок
синтезін бастаушы белоктық факторлар,
оларды Ғ1, Ғ2, Ғ3
деп белгілейді.
Бұл кезеңде белок синтезінің
ядролық кезеңінде түзілген, белгілі
бір полипептидтің, амин қышқылдың
құрамы туралы информациясы бар
и-РНҚ рибосоманың кіші суббірлігімен
қосылады. Сонан соң бұл
и-РНҚ + кіші суббірлік комплексі белок
синтезін бастаушы амин қышқылы метионинді
тіркеген т-РНҚ мен қосылады. Енді бұл
түзілген комплекс рибосоманың үлкен
суббірлігімен қосылып, активті, белок
синтезін жүргізуге дайын рибосоманы
құрайды.[2]
Осы активті рибосоманың түзілуіне
Ғ1, Ғ2, Ғ3
белоктық факторлар да өз үлесін қосады.
Рибосоманың кіші суббірлігі 21 белоктан
және 1600 нуклеотид тізбегінен тұратын
бір р-РНҚ-нан тұрса, үлкен суббірлік 34
белоктан және 3200 және 120 нуклеотидтік
тізбектерден тұратын екі р-РНҚ-дан тұрады.
Осы
жоғарыда түзілген комплекстердің
нәтижесінде үлкен суббірлікте
екі центр пайда болады. Оларды:
пептидилді, амино-ацилді центрлер
деп атайды.
Пептидилдік центрде синтезделетін
пептид тізбегі орналасса, аминоацилді
центрде осы пептидтік тізбектің
өсуіне қатысатын аминоацил-т-РНҚ
орналасады. Кез келген белоктың
синтезі прокариоттарда М- формилметиониннен
басталса, эукариоттарда метиониннен
басталады. Метиониннің активтелуі де
басқа амин қышқылдарының активтелуі
сияқты АТФ пен т-РНҚ-ның және метионил
- т-РНҚ - синтетаза ферментінің қатысуымен
жүреді. Кесте түрінде: Метионин + т
- РНҚ + АТФ Е метионил - т-РНҚ
+ АМФ + Рн Рп Е - метионил - т-РНҚ
- синтетаза.
Ал прокариоттарда әрі қарай
формил тобының қосылу реакциясы
жүріп, N -Формилметионин
түзеді:[2]
Метионил
- т-РНҚ+ N10- формил – ТГФҚ___ТГФ
+ формилметионин - т-РНҚ.
Трансляцияның 3-ші кезеңі: элонгация
деген атпен белгілі. Бұл кезеңге
қажетті заттар: екінші кезеңде
түзілген активті рибосома; и-РНҚ-дағы
кодондарға сәйкес келетін аминоацил
- т-РНҚ; Мg2+; белоктық факторлар;
ГТФ; пептидилтрансфераза; транслоказа.
Бұл
кезеңде амин қышқылдарының біртіндеп
бірінен кейін бірінің пептидтік
байланыс арқылы орналасуы нәтижесінде
полипептидтік тізбектің өсуі
байқалады. Рибосоманың и-РНҚ-ның
бойымен бір кодонга жылжуы
үшін, аминоацил т-РНҚ-ның кодонына
сәйкес келіп комплементарлы
түрде байланысуы үшін 2 молекула
ГТФ-тың гидролизі кезінде бөлінетін
энергия жұмсалады. Аминоацил
- т-РНҚ и-РНҚ кодонына сәйкес
байланысуы жүреді.
2/ Транспептидаза
ферментінің әсерімен метионин
амин
кышқылы центрдегі амин қышқылымен
пептидтік байланыс түзеді.
3/ Транслоказа
ферментінің әсер етуімен рибосома
и-РНҚ-ның бойымен бір кодонга
жылжиды. Түзілген дипептид пептидилдік
центрде болады да, аминоацилдік
центр келесі аминоацил-т-РНҚ-ның
байланысуы үшін бос қалады. Міне,
осылай пептидтік тізбек өсе
береді, элонгацияның пептидилтрансфераза
және транслоказа ферменттерінің
атқаратын жұмыстары қайталанып
и-РНҚ-да жазылынып алынған белоктың
молекуласындағы амин қышқылдары
өзінің орындарын табады. Бір
пептидтік байланыс түзу үшін
3 молекула ГТФ және I молекула
АТФ-тың гидролизденгендегі энергиясы
жұмсалады. Белоктардың синтезі, тірі
организмдердегі знергияны өте көп қажет
ететін синтез болғанмен, өте жылдам жүреді.
400 амин қышқылдарынан тұратын белок 20
секундта синтезделіп болады.
Белоктардың синтезі бір рибосомада
өтуі мүмкін немесе бір уақытта
бірнеше рибосомада /полисомада/ жүруі
мүмкін. Полисома бір и-РНҚ бойында
бола алатын рибосомалар тобы
/80-ге жуық рибосома/ болуы мүмкін.
Мұндай бір и-РНҚ-ның бойындағы
информацияны бір уақытта бірнеше
рибосоманың көмегімен белок
синтезіне қолдану синтездің
тез және тиімді өтуіне мүмкіндік
тудырады.
Бактерияларда транскрипция және
трансляция бірімен-бірі ілесіп
жүреді, яғни ДНҚ-на тәуелді РНҚ-полимераза
и-РНҚ-ның синтезін жүргізіп жатқан
кезде, и-РНҚ-ның бір шетінде
белок синтезі де басталып
жатады. Бактериялардың екінші бір
ерекшелігі и-РНҚ-ның тіршілік
ету уақыты бірнеше минут қана,
сонан соң олар тез нуклеаза
ферментінің әсерімен ыдырап
кетеді.
Трансляцияның
4-ші кезеңі - Терминация яғни синтездің
бітуі, аяқталу кезеңі, керекті
эаттар:
1/
АТФ;
2/ белок
синтезінің біткенін білдіруші
и-РНҚ-дағы кодондар;
3/ полипептидтің
рибосомадан босап шығуына қажет
белоктық факторлар, и-РНҚ-да соңғы
амин қышқылын көрсететін кодон
біткен соң, мағынасыз, мәнсіз
кодондар басталады. Олардың саны
үшеу: УАА, УАГ, УГА. Міне осы
кодондардың басталуы, полипептидттің
синтезінің біткенін хабарлайды.
Сонан соң, синтезді бітіруші
факторлар /Ғ1, Ғ2/ өздерінің
әрекетін бастайды. Бұл факторлар: I/ полипептидтің
соңғы т-РНҚ-дан гидролиздік жолмен ыдырап
шығуын және т-РНҚ-ның босауын; 2/ соңғы
т-РНҚ-ның пептидилдік бөлімнің "бос"
күйінде бөлінуін; 3/ рибосоманың 305 жане
505 суббірліктерге диссоциациялануын
қамтамасыз етеді.[2]
Трансляцияның 5-ші кезеңі - кеңістіктегі
полипептидтік тізбектің орналасуы
және процессинг. Бұл кезеңде
полипептид өзінің кеңістіктегі
екінші- , үшінші - реттік құрылысын
түзіп, биологиялық активті түріне
көшеді. Сонымен қатар бұл кезеңде
бірінші амин қышқылы метиониннен
және кейбір керек емес амин
қышқылдарынан ажырап, кейбір амин
қышқылдарының қалдықтары өзіне
фосфат, - метил - , карбоксил - , ацетил
топтарын қосып алуы мүмкін. Ал
кейде белоктар өзіне олигосахаридтер
мен коферменттерді қосып, өзінің
биологиялық қызметін атқаруға
дайын болады. Белоктардың синтезі
көптеген антибиотиктер әсерінен
тежеуге ұшырауы мүмкін. Кейбір
микроорганизмдер үшін қорғаныш
антибиотиктер, басқа организмдер
үшін өте улы болып табылады.
Мысалы: пурамицин - элонгация кезеңінде
әсер етсе, тетрациклин аминоацил
- т-РНҚ-ның рибосомадағы аминоацилдік
центрімен байланысуына кедергі
жасайды; стрептомицин - рибосоманың
кіші суббірлігімен қосылып
оның қызметін нашарлатады; дифтерия
токсині-элонгация факторын тежейді;
левомицетин - пептидилтрансфераза
ферментінің активтілігін нашарлатады;
эритромицин - үлкен суббірлікпен
қосылып, транслоказа ферментінің
жұмысын тежейді. Белоктар синтезінің
реттелуі. Белок синтезінің реттелуі и-РНҚ-ның
синтезі және трансляция /яғни белок синтезі/
кезеңінде жүреді. Бұл бағытта аса көп
жұмыс істеген француз ғалымдары Жакоб
және Моно болды. Бұл ғалымдар осы жұмысы
үшін Нобель сыйлығына ие болды. Олар белоктарды
синтездеу теориясын оперон теориясы
деп атады. Бұл ғалымдардың пікірі бойынша
бактерияларда ең кемінде геннің үш түрі
болады: I/ оператор гені /0-ген/; 2/ реттеуші
ген / R -ген/; 3/ белоктардың бірінші
реттік құрылысын анықтайтын құрылымдық
ген / S - ген/.