Биоразложение органических веществ

Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 00:29, реферат

Описание

Биоразложение - распад какого-либо вещества в результате жизнедеятельности микроорганизмов. Конечным результатом этого процесса являются устойчивые, простые соединения (такие как вода и углекислый газ). Вещества техногенного происхождения, не поддающиеся биоразложению, попадая в почву в качестве отходов, ухудшают экологическую обстановку.
Биотрансформация является важнейшей составляющей механизма хемотоксикокинетики и представляет собой сложный многостадийный процесс В ходе биотрансформации может образовываться ряд продуктов, часть из них представляет собой соединения, менее опасные, чем исходные вещества, однако другие могут быть более реакционноспособными, чем исходные, и вследствие этого обладать более высокой биологической активностью. В предыдущей главе подробно описаны биохимические механизмы метаболизма и токсического действия, а также обсуждены понятия "летальный распад" и "летальный синтез".

Содержание

Введение…………………………………………………………………………...3
Биоразложение…………………………………………………………………….5
Биоразложение органических отходов ………………………………………….7
Метаболизм………………………………………………………………………..9
Общие представления о метаболизме органических веществ………………..11
Биотрансформация………………………………………………………………15
Биотрансформация органических ксенобиотиков…………………………….20
Выводы…………………………………………………………………………...26
Список литературы………………………………………………………………27

Работа состоит из  1 файл

реферат.doc

— 137.00 Кб (Скачать документ)

     Ксенобиотики - чужеродные для организмов соединения (промышленные загрязнения, пестициды, препараты бытовой химии, лекарственные средства и т.п.). Попадая в окружающую среду в значительных количествах, ксенобиотики могут служить причиной многих заболеваний, воздействовать на генетический аппарат организмов, вызывать их гибель, нарушать равновесие природных процессов в биосфере. Превращения ксенобиотиков в организмах, пути их детоксикации и деградации учитываются при организации санитарно-гигиенических мероприятий, мер по охране природы.

     Многие  ксенобиотики, попав в организм, подвергаются биотрансформации и выделяются в виде метаболитов. В основе биотрансформации по большей части лежат энзиматические преобразования молекул. Биологический смысл явления - превращение химического вещества в форму, удобную для выведения из организма, и тем самым, сокращение времени его действия.

     Метаболизм  ксенобиотиков проходит в две фазы (рисунок 2).

     

     Рисунок 2. Фазы метаболизма чужеродных соединений 

     В ходе первой фазы окислительно-восстановительного или гидролитического превращения молекула вещества обогащается полярными функциональными группами, что делает ее реакционно-способной и более растворимой в воде. Во второй фазе проходят синтетические процессы конъюгации промежуточных продуктов метаболизма с эндогенными молекулами, в результате чего образуются полярные соединения, которые выводятся из организма с помощью специальных механизмов экскреции.

     Разнообразие  каталитических свойств энзимов  биотрансформации и их низкая субстратная специфичность позволяет организму метаболизировать вещества самого разного строения. Вместе с тем, у животных разных видов и человека метаболизм ксенобиотиков проходит далеко не одинаково, поскольку энзимы, участвующие в превращениях чужеродных веществ, часто видоспецифичны.

     Следствием  химической модификации молекулы ксенобиотика могут стать:

     1. Ослабление токсичности;

     2. Усиление токсичности;

     3. Изменение характера токсического  действия;

     4. Инициация токсического процесса.

     Метаболизм многих ксенобиотиков сопровождается образованием продуктов существенно уступающих по токсичности исходным веществам. Так, роданиды, образующиеся в процессе биопревращения цианидов, в несколько сот раз менее токсичны, чем исходные ксенобиотики. Гидролитическое отщепление от молекул зарина, зомана, диизопропилфторфосфата иона фтора, приводит к утрате этими веществами способности угнетать активность ацетилхолинэстеразы и существенному понижению их токсичности. Процесс утраты токсикантом токсичности в результате биотрансформации обозначается как "метаболическая детоксикация". В процессе метаболизма других веществ образуются более токсичные соединения. Примером такого рода превращений является, в частности, образование в организме фторуксусной кислоты при интоксикации фторэтанолом.

     В ряде случаев в ходе биотрансформации ксенобиотиков образуются вещества, способные совершенно иначе действовать  на организм, чем исходные агенты. Так, некоторые спирты (этиленгликоль), действуя целой молекулой, вызывают седативно-гипнотический эффект (опьянение, наркоз). В ходе их биопревращения образуются соответствующие альдегиды и органические кислоты (щавелевая кислота), способные повреждать паренхиматозные органы и, в частности, почки. Многие низкомолекулярные вещества, являющиеся факультативными аллергенами, подвергаются в организме метаболическим превращениям с образованием реакционноспособных промежуточных продуктов. Так, соединения, содержащие в молекуле амино- или нитрогруппу в ходе метаболизма превращаются в гидроксиламины, активно взаимодействующие с протеинами крови и тканей, формируя полные антигены. При повторном поступлении таких веществ в организм помимо специфического действия развиваются аллергические реакции.

     Порой сам процесс метаболизма ксенобиотика является пусковым звеном в развитии интоксикации. Например, в ходе биологического окисления ароматических углеводородов инициируются свободно-радикальные процессы в клетках, образуются ареноксиды, формирующие ковалентные связи с нуклеофильными структурами клеток (белками, сульфгидрильными группами, нуклеиновыми кислотами и т.д), активирующие перекисное окисление липидов биологических мембран. В итоге инициируется мутагенное, канцерогенное, цитотоксическое действие токсикантов. 

       

     Аналогично  ареноксидам на клетки действуют N-оксиды, нитрозамины, гидроксиламины, также являющиеся канцерогенами и мутагенами. В опытах на собаках установлена прямая зависимость между канцерогенной активностью (рак мочевого пузыря) и концентрацией в моче продуктов N-окисления веществ в ряду: 1-нафтиламин, 2-нафтиламин, 4-аминодифенил. По такому же механизму действуют на организм галогенированный бензол, нафтанол и многие другие ксенобиотики. Процесс образования токсичных продуктов метаболизма называется "токсификация", а продукты биотрансформации, обладающие высокой токсичностью - токсичными метаболитами. Во многих случаях токсичный метаболит является не стабильным продуктом, подвергающимся дальнейшим превращениям. В этом случае он также называется промежуточным или реактивным метаболитом. Реактивные метаболиты это как раз те вещества, которые часто и вызывают повреждение биосистем на молекулярном уровне. Общим свойством практически всех реактивных метаболитов является их электродефицитное состояние, т.е. высокая электрофильность. Эти вещества вступают во взаимодействие с богатыми электронами (нуклеофильными) молекулами, повреждая их. К числу последних относятся макромолекулы клеток, в структуру которых входят в большом количестве атомы кислорода, азота, серы. Это, прежде всего, белки и нуклеиновые кислоты. Реактивные метаболиты либо присоединяются к нуклеофильным молекулам, образуя с ними ковалентные связи, либо вызывают их окисление. В обоих случаях структура макромолекул нарушается, следовательно, нарушаются и их функции.

     Биоактивация  далеко не всегда сопровождается повреждением биосубстрата, поскольку одновременно в организме протекают процессы детоксикации и репарации. Интенсивность этих процессов может быть достаточной для компенсации ущерба, связанного с образованием реактивных метаболитов. Тем не менее при введении высоких доз токсиканта, повторном воздействии защитные механизмы могут оказаться несостоятельными, что и приведет к развитию токсического процесса.

     Факторы, влияющие на биотрансформацию ксенобиотиков 

     Чужеродные  соединения, обычно метаболизируются несколькими различными путями, образуя множество метаболитов. Скорость, с которой протекает каждая из этих реакций и их относительная важность зависят от многих факторов в результате чего происходят изменения в картине метаболизма и возникают различия в токсичности. Эти факторы по своему происхождению могут быть генетическими, физиологическими или связанными с условиями окружающей среды.

     К генетическим факторам относятся видовые  различия и различия внутри одного вида.

     К физиологическим факторам, которые влияют на метаболизм, относятся возраст, пол, состояние питания, заболевания и т. д. К факторам окружающей среды можно отнести стресс из-за неблагоприятных условий, облучение ионизирующий радиацией, свет , ОВП и т. д., наличие других ксенобиотиков, а также большое влияние на процессы (скорость) метаболизации природа (структура) самих ксенобиотиков.

     Биодоступность  ксенобиотиков 

     Результат воздействия ксенобиотика на живой  организм определяется свойствами ксенобиотика, организма, биоценоза и биотопа и обусловлен биодоступностью соединения. Под биодоступностью понимают способность различных соединений подвергаться биотрансформации. Биодоступность определяется генетическими свойствами организмов, осуществляющих трансформацию поступающих в организм веществ, условиями окружающей среды, влияющими на скорость переноса соединений в организмы и клетки, токсичностью соединений для организма-мишени и их концетрации в окружающей среде. В зависимости от времени полураспада химические соединения классифицируют на легко доступные (от 1 до 7 сут), умеренно доступные (от 7 сут до 4 недель), трудно доступные (от6 мес до 1 года).

     Ключевой  фактор в биодоступности ксенобиотика - его способность вступать в реакции  подготовительного и центрального метаболизма, которая в свою очередь определяется свойствами ксенобиотика и зависит от особенностей организма. Выявлен ряд закономерностей биохимической доступности многих ксенобиотиков в зависимости от их химической структуры. Так наблюдается тенденция, чем сложнее молекула ксенобиотика, тем менее доступна для биодеградации, тем меньше микроорганизмов способно к ее утилизации. Например, скорость биодеградации насыщенных соединений, как правило, выше скорости биодеградации ненасыщенных; алифатических углеводородов выше, чем с разветвленной.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Выводы 

     Воздействие ксенобиотиков на живой мир, и  на человека в частности происходит, в самых различных комбинациях  этих соединений не только друг с другом, но и с фактором окружающей среды. Поэтому многие из ксенобиотиков, вошедших в сегодняшнюю практику могут являться носителями опасного биологического действия.

     Биотрансформация — это биохимический процесс, в ходе которого вещества трансформируются под действием ферментных систем организма. Это явление называют также метаболизмом или детоксикацией.

     Поэтому небходимо создавать вещества или  выводить микроорганизмы, которые бы способствовали деградации ксенобиотиков  не причиняя отрицательных действий всему живому миру. Одними из них  являются микроорганизмы-деструкторы, способные очистки окружающей среды от различных загрязнений. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Список  литературы

1. http://readings.gmik.ru/files/2004/af5d5e52e7149feaaa28d25cdea9d987.pdf

«Биоразложение бытовых отходов с использованием адаптированной ассоциации метанообразующих микроорганизмов»

© И.Н.Лыков, К.С.Лавринавичус, В.К.Ильин, С.А.Сафронова, Е.А.Тарасова, Н.И.Волыхина, Е.В.Волыхина, М.И.Морозенко 
© 
ГМИК им. К.Э. Циолковского 
Секция "К.Э. Циолковский и проблемы космической медицины и биологии" 
2004 г.
 

2. http://www.mmm.spb.ru/Allergology/2002/4/Art3.php

«Полиморфизм ферментов биотрансформации ксенобиотиков у детей с атопическим дерматитом»

Л.Ф. Казначеева, В.А. Вавилин, А.А. Ляпунова, О.Г. Сафронова, Н.А. Мананкин 

3. Юрин В.М. «Основы ксенобиологии» Минск БГУ 2001

4. Обезвреживание ксенобиотиков (КУЛИНСКИЙ В.И. , 1999), БИОЛОГИЯ

5. http://medik-lif.ru/farmakologiya/12-biotransformacziya.html

6. http://www.biotechnolog.ru/prombt/prombt2_4.htm

Информация о работе Биоразложение органических веществ