Генная терпия

Автор работы: Пользователь скрыл имя, 11 Февраля 2013 в 13:47, контрольная работа

Описание

Решающие достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, их картировании на хромосомах млекопитающих, и прежде всего человека, впечатляющие успехи проекта "Геном человека" в идентификации и клонировании генов, мутации которых приводят к многочисленным наследственным болезням, и, наконец, бурный рост в области биотехнологии и генной инженерии явились необходимыми предпосылками для того, чтобы от опытов на животных и теоретических построений уже в 1989 году предпринять первые попытки лечения моногенных болезней.

Содержание

ВВЕДЕНИЕ
ОСНОВНАЯ ЧАСТЬ
2.1 КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА
2.2 МЕТОДЫ ГЕНЕТИЧЕСКОЙ ТРАНСФЕКЦИИ В ГЕННОЙ ТЕРАПИИ
2.3 ПРИНЦИПЫ ГЕННОЙ ТЕРАПИИ
2.4 ГЕНОТЕРАПИЯ МОНОГЕННЫХ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ
2.5 ГЕНОТЕРАПИЯ НЕНАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ
2.6 НЕКОТОРЫЕ ЭТИЧЕСКИЕ И СОЦИАЛЬНЫЕ ПРОБЛЕМЫ
ГЕННОЙ ТЕРАПИИ
2.7 ПЕРСПЕКТИВЫ ГЕНОТЕРАПИИ
ЗАКЛЮЧЕНИЕ
СПИСОК ЛИТЕРАТУРЫ

Работа состоит из  1 файл

генная терапия.docx

— 162.81 Кб (Скачать документ)

План

ВВЕДЕНИЕ

ОСНОВНАЯ ЧАСТЬ

2.1 КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА

2.2 МЕТОДЫ ГЕНЕТИЧЕСКОЙ ТРАНСФЕКЦИИ В ГЕННОЙ ТЕРАПИИ

2.3 ПРИНЦИПЫ ГЕННОЙ ТЕРАПИИ

2.4 ГЕНОТЕРАПИЯ МОНОГЕННЫХ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

2.5 ГЕНОТЕРАПИЯ НЕНАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

2.6 НЕКОТОРЫЕ ЭТИЧЕСКИЕ И СОЦИАЛЬНЫЕ ПРОБЛЕМЫ

ГЕННОЙ ТЕРАПИИ

2.7 ПЕРСПЕКТИВЫ ГЕНОТЕРАПИИ

ЗАКЛЮЧЕНИЕ

СПИСОК ЛИТЕРАТУРЫ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ВВЕДЕНИЕ

Решающие достижения молекулярной биологии и генетики в изучении тонкой структуры генов эукариот, их картировании на хромосомах млекопитающих, и прежде всего человека, впечатляющие успехи проекта "Геном человека" в идентификации и клонировании генов, мутации которых приводят к многочисленным наследственным болезням, и, наконец, бурный рост в области биотехнологии и генной инженерии явились необходимыми предпосылками для того, чтобы от опытов на животных и теоретических построений уже в 1989 году предпринять первые попытки лечения моногенных болезней.

Что же такое генная терапия? Подразумевает ли она лечение  с помощью гена как лекарственного препарата или только лечение путем коррекции мутантного гена? Эти и многие другие вопросы неминуемо возникают при рассмотрении такого многообещающего, а возможно, и потенциально опасного для человечества направления медицины грядущего XXI века, как генная терапия.

2.1 КРАТКАЯ ИСТОРИЧЕСКАЯ СПРАВКА

Генную терапию на современном  этапе можно определить как лечение  наследственных, мультифакториальных  и ненаследственных (инфекционных) заболеваний путем введения генов в клетки пациентов с целью направленного изменения генных дефектов или придания клеткам новых функций. Первые клинические испытания методов генной терапии были предприняты 22 мая 1989 года с целью генетического маркирования опухоль-инфильтрующих лимфоцитов в случае прогрессирующей меланомы. Первым моногенным наследственным заболеванием, в отношении которого были применены методы генной терапии, оказался наследственный иммунодефицит, обусловленный мутацией в гене аденозиндезаминазы (ADA). 14 сентября 1990 года в Бетесде (США) четырехлетней девочке, страдающей этим достаточно редким заболеванием (1:100000), были пересажены ее собственные лимфоциты, предварительно трансформированные вне организма (ex vivo) геном ADA (ген ADA + ген пео + ретровирусный вектор). Лечебный эффект наблюдался в течение нескольких месяцев, после чего процедура была повторена с интервалом 3…5 месяцев. За три года терапии в общей сложности проведены 23 внутривенные трансфузии ADA-трансформированных Т-лимфоцитов без видимых неблагоприятных эффектов. В результате лечения состояние пациентки настолько улучшилось, что она смогла вести нормальный образ жизни и не бояться случайных инфекций. Столь же успешным оказалось и лечение второй пациентки с этим заболеванием. В настоящее время клинические испытания генной терапии этого заболевания проводятся в Италии, Франции, Великобритании и Японии.

В 1997 году число допущенных к клиническим испытаниям протоколов уже составляло 175, более 2000 пациентов  приняли участие в их реализации [2]. Большинство таких проектов (около 80%) касаются лечения онкологических заболеваний, а также ВИЧ-инфекции (СПИДа). Вместе с тем и в современных исследованиях по генной терапии необходимо учитывать, что последствия манипулирования генами или рекомбинантными ДНК in vivo изучены недостаточно.

В странах с наиболее продвинутым  уровнем исследований в этой области, особенно в США, медицинские протоколы с использованием смысловых последовательностей ДНК подвергаются обязательной экспертизе в соответствующих комитетах и комиссиях. В США таковыми являются Консультативный комитет по рекомбинантным ДНК (Recombinant DNA Advisory Committee, RAC) и Управление по лекарствам и пищевым продуктам (Food and DrugAdministration, FDA) с последующим обязательным утверждением проекта директором Национальных институтов здоровья (National Institutes of Health). В Европе такие протоколы составляют и утверждают в соответствии с рекомендациями Европейской рабочей группы по переносу генов и генной терапии (European Working Group on HumanGene Transfer and Therapy).  

 

2.2 МЕТОДЫ ГЕНЕТИЧЕСКОЙ ТРАНСФЕКЦИИ В ГЕННОЙ ТЕРАПИИ

Решающим условием успешной генотерапии является обеспечение эффективной доставки, то есть трансфекции (в широком смысле) или трансдукции (при использовании вирусных векторов) чужеродного гена в клетки-мишени, обеспечение длительного функционирования его в этих клетках и создание условий для полноценной работы гена (его экспрессии). Трансфекция может проводиться с использованием чистой ("голой" — naked) ДНК, легированной (встроенной) в соответствующую плазмиду, или комплексированной ДНК (плазмидная ДНК, соединенная с солями, белками (трансферрин), органическими полимерами (DEAE-декстран, полилизин, липосомами или частицами золота), или ДНК в составе вирусных частиц, предварительно лишенных способности к репликации.

Основные методы доставки чужеродных генов в клетки разделяются  на химические, физические и биологические. Эффективность трансфекции и интеграционная способность трансдуцированной чужеродной ДНК при различных способах трансфекции в ДНК-клетки мишени неодинакова. Только вирусные векторы или генетические конструкции, включающие вирусные последовательности, способны к активной трансдукции, а в некоторых случаях и к длительной экспрессии чужеродных генов. Из более 175 уже одобренных протоколов клинических испытаний по генотерапии более 120 предполагают использовать вирусную трансдукцию и около 100 из них основаны на применении ретровирусных векторов.

Обзор данных позволяет прийти к заключению, что, несмотря на усилия многих лабораторий мира, все уже  известные и испытанные in vivo и in vitro векторные системы далеки от совершенства. Если проблема доставки чужеродной ДНК in vitro практически решена, а ее доставка в клетки-мишени разных тканей in vivo успешно решается (главным образом путем создания конструкций, несущих рецепторные белки, в том числе и антигены, специфичные для тех или иных тканей), то другие характеристики существующих векторных систем – стабильность интеграции, регулируемая экспрессия, безопасность – все еще нуждаются в серьезных доработках.

Прежде всего это касается стабильности интеграции. До настоящего времени интеграция в геном достигалась только при использовании ретровирусных либо аденоассоциированных векторов. Повысить эффективность стабильной интеграции можно путем совершенствования генных конструкций типа рецептор-опосредованных систем, либо путем создания достаточно стабильных эписомных векторов (то есть ДНК-структур, способных к длительной персистенции внутри ядер).

Рецептор-опосредованный перенос генов заключается в следующем. ДНК-последовательность нужного гена соединяют с определенным веществом (например, гликопротеином), который обладает высоким сродством к определенному мембранному рецептору трансформируемой клетки (например, гепатоцита). Полученный комплекс соединяют с аденовирусом, обеспечивающим проникновение генной конструкции в ядро клетки. Такой комбинированный вектор обеспечивает эффективную адресную доставку гена в определенные клетки.

В последнее время особое внимание уделяется созданию векторов на базе искусственных хромосом млекопитающих (Mammalian Artificial Chromosomes). Благодаря наличию основных структурных элементов обычных хромосом такие мини-хромосомы длительно удерживаются в клетках и способны нести полноразмерные (геномные) гены и их естественные регуляторные элементы, которые необходимы для правильной работы гена, в нужной ткани и в должное время.

Генная терапия, лечение болезней путем введения пациенту здоровых генов вместо недостающих или поврежденных. Первый раз человека подвергли такому лечению в США в 1990 г. Это был четырехлетний ребенок, страдающий дефицитом редкого энзима, отсутствие которого разрушает иммунную систему человека. Исправление или замещение поврежденных генов производится по методам генной инженерии. Здоровый ген вводят в какой-нибудь вирус (обычно переносчик легко поддающейся лечению инфекции) так, чтобы он был непосредственно нацелен на поврежденные клетки. С самого начала генная терапия была задумана как средство лечения наследственных заболеваний - муковисцидиоз или серповидная анемия, но также исследовались возможности применения метода для лечения других болезней, таких как рак, при которой ген поражается только спустя некоторое время. Хотя тысячи больных уже были излечены, главным образом в США, генная терапия еще не сказала своего слова. Не все из вводимых генов достигают цели, и не все, попавшие в поврежденную клетку, эффективно срабатывают. Существует также проблема использования вируса в качестве переносчика гена. Организм встречает вирус как «чужака», и у некоторых пациентов из-за этого наблюдается тяжелая иммунная реакция. Существует и теоретический риск того, что сам вирус может распространиться и вызвать рак.

Генная терапия используется для лечения тяжелых состояний  иммунодефицита, когда исчезает ген, ответственный за выработку энзима адено-зина дезаминазы (АДА). Так как  АДА очень важен для выработки  лейкоцитов(белых кровяных телец), это приводит к тому, что организм становится беззащитен против инфекций. Тогда два ретро-вируса (1) вводятся в костный мозг, который может выработать РНК из своего ДНК (2), используя резервный энзим транскриптазы (3). Потом эта ДНК объединяется с человеческими хромосомами (4). Когда количество хромосом увеличивается, вырабатывается новая вирусная РНК, ви русные протеины и АДА (5). Вирусная РНК и вирусные белки вырабатывают много новых вирусов, а АДА используется организмом для производства жизненно важных лейкоцитов. Потом процесс повторяется и распространяется на весь костный мозг.

 

2.3 ПРИНЦИПЫ ГЕННОЙ ТЕРАПИИ

В зависимости от способа  введения экзогенных ДНК в геном  пациента генная терапия может проводиться либо в культуре клеток (ех vivo), либо непосредственно в организме (in vivo). Клеточная генная терапия или терапия ех vivoпредполагает выделение и культивирование специфических типов клеток пациента in vitro, введение в них чужеродных генов (например, усиливающих иммунный ответ организма), отбор трансфецированных клонов клеток и реинфузию (введение) их тому же пациенту. В настоящее время в большинстве допущенных к клиническим испытаниям программ генной терапии используется именно этот подход.

Генная терапия in vivo основана на прямом введении клонированных и определенным образом упакованных последовательностей ДНК в специфические ткани больного. Особенно перспективным для лечения генных болезней invivo представляется введение генов с помощью аэрозольных или инъецируемых вакцин. Аэрозольная генотерапия разрабатывается, как правило, для лечения пульмонологических заболеваний (муковисцидоз, рак легких).

Разработке программы  генной терапии предшествуют тщательный анализ тканеспецифической экспрессии соответствующего гена, идентификация первичного биохимического дефекта, исследование структуры, функции и внутриклеточного распределения его белкового продукта, а также биохимический анализ патологического процесса. Все эти данные учитываются при составлении соответствующего медицинского протокола. Апробацию процедуры генокоррекции наследственного заболевания проводят на первичных культурах клеток больного, в которых в норме функционально активен данный ген. На этих клеточных моделях оценивают эффективность выбранной системы переноса экзогенной ДНК, определяют экспрессию вводимой генетической конструкции, анализируют ее взаимодействие с геномом клетки, отрабатывают способы коррекции на биохимическом уровне.

Используя культуры клеток, можно разработать систему адресной доставки рекомбинантных ДНК, однако проверка надежности работы этой системы может  быть осуществлена только на уровне целого организма. Поэтому такое внимание в программах по генной терапии уделяется  экспериментам in vivo на естественных или искусственно полученных моделях соответствующих наследственных болезней у животных. Успешная коррекция генетических дефектов у таких животных и отсутствие нежелательных побочных эффектов генной терапии являются важнейшей предпосылкой для разрешения клинических испытаний.

Таким образом, стандартная  схема генокоррекции наследственного  дефекта включает серию последовательных этапов. Она начинается созданием полноценно работающей (экспрессирующейся) генетической конструкции, содержащей смысловую (кодирующую белок) и регуляторную части гена. На следующем этапе решается проблема вектора, обеспечивающего эффективную, а по возможности и адресную доставку гена в клетки-мишени. Затем проводится трансфекция (перенос полученной конструкции) в клетки-мишени, оценивается эффективность трансфекции, степень коррегируемости первичного биохимического дефекта в условиях клеточных культур (in vitro) и, что особенно важно, in vivo на животных — биологических моделях. Только после этого можно приступать к программе клинических испытаний. 

 

2.4 ГЕНОТЕРАПИЯ МОНОГЕННЫХ НАСЛЕДСТВЕННЫХ ЗАБОЛЕВАНИЙ

Успех первых клинических  испытаний явился мощным стимулом для  ускорения развития новых генотерапевтических  методов применительно к другим наследственным болезням. Ниже приведен список болезней, для которых принципиально возможен генотерапевтический подход, генокоррекция которых с большой вероятностью будет осуществлена уже в обозримом будущем, а также те заболевания, для которых уже имеются официально утвержденные протоколы и которые находятся на разных стадиях клинических испытаний. 

 

Таблица 1 – Наследственные заболевания, генокоррекция которых находится на стадии клинических испытаний (КИ), экспериментальных разработок (ЭР) и принципиально возможна (ПВ)

Болезнь

Дефектный ген

Клетки-мишени

Стадия

Иммунодефицит

Аденозиндезаминаза

Лимфоциты

КИ

Иммунодефицит

Пуриннуклеозидфосфорилаза

Лимфоциты

ПВ

Семейная гиперхолестеринемия

Рецептор липопротеинов  низкой плотности

Гепатоциты

КИ

Гемофилия В

Фактор IX

Фибробласты

КИ

Гемофилия А

Фактор VIII

Миобласты, фибробласты

ЭР

Болезнь Гоше (сфинголипидоз)

р-Глюкоцереброзидаза

Макрофаги, стволовые клетки

КИ

Болезнь Хантера

Идуронатсульфатаза

Макрофаги, стволовые клетки

ПВ

Синдром Гурлера

L-идуронидаза

Макрофаги, стволовые клетки

ПВ

Эмфизема легких

α -1 -Антитрипсин

Лимфоциты

ЭР

Муковисцидоз

СГ-трансмембранный регулятор

Эпителий бронхов

КИ

Фенилкетонурия

Фенилаланингидроксилаза

Гепатоциты

ЭР

Гипераммонемия

Орнитинтранскарбамилаза

Гепатоциты

ПВ

Цитрулинемия

Аргиносукцинатсинтетаза

Гепатоциты

ПВ

Мышечная дистрофия Дюшенна

Дистрофии

Миобласты, миофибриллы

ЭР

Талассемия

β -Глобин

Эритробласты

ЭР

Серповидноклеточная анемия

β -Глобин

Эритробласты

ЭР

Респираторный дистресс-синдром

Сурфактант белок В

Эпителий бронхов

ЭР

Хронический грануломатоз

NADPH-оксидаза

Гранулоциты

ЭР

Болезнь Альцгеймера

Белок – предшественник β-амилоида (ААР)

Нервные клетки

ЭР

Болезнь Паркинсона

Тирозингидроксилаза

Миобласты, фибробласты, нервные  клетки

ЭР

Метахроматическая лекодистрофия

Арилсульфатаза А

Стволовые клетки крови, нервные  клетки

ПВ

Синдром Леш-Нихана

Гипоксантинфосфорибозилтрансфераза

Нервные клетки

ПВ

Информация о работе Генная терпия