Автор работы: Пользователь скрыл имя, 11 Ноября 2011 в 11:14, контрольная работа
Как общая Микробиология, так и её специальные разделы развиваются исключительно бурно. Существуют три основных причины такого развития. Во-первых, благодаря успехам физики, химии и техники Микробиология получила большое число новых методов исследования. Во-вторых, начиная с 40-х гг. 20 в. резко возросло практическое применение микроорганизмов. В-третьих, микроорганизмы стали использовать для решения важнейших биологических проблем, таких, как наследственность и изменчивость, биосинтез органических соединений, регуляция обмена веществ и др.
План:
Значение микробиологии в свете решений партии и правительства в дальнейшем подъеме сельского хозяйства в СССР.
Микроплазмы как представители микромира
Влияние химических факторов внешней среды на развитие микроорганизмов.
Химическая природа, сущность действия и классификация ферментов микроорганизмов.
Мутации и мутагенные факторы
После
того как стало возможным
Полную аминокислотную последовательность для многих белков , в том числе и для ферментов. Помимо первичной структуры, определяемой последовательностью расположения аминокислот, для проявления специфических свойств белка (в ном числе ферментативной активности) важную роль играют более высокие уровни - вторичная и третичная структуры, сущность которых заключается в определённом расположение полипептидных цепей в пространстве.
Вторичная
и третичная структуры белков
поддерживаются сравнительно слабыми
внутримолекулярными связями, и
поэтому легко могут быть разрушены
разными физическими и
Классификация ферметов
Сейчас известно около 2 тысяч ферментов, но список этот не закончен. В зависимости от типа катализируемой реакции все ферменты подразделяются на 6 классов:
Ферменты,
катализирующие окислительно-
Ферменты переноса различных групировокгруппировок ( метильных, амино- и фосфогрупп и другие)- трансферазы.
Ферменты, осущевствляющие гидролиз химических связей,-связей - гидролазы
Ферменты негидролитическогоне гидролитического отщепления от субстрата различных группировок (NH3, CO2,H2O и другие)- лиазы.
Ферменты,
ускоряющие синтез связей в биологических
молекулах при участии
Ферменты, катализирующие превращение изомеров друг в друга,- изомеразы.
ОКСИДОРЕДУКТАЗЫ – ферменты, катализирующие окислительно-восстановительные процессы в организме. Они осущевствляют перенос водорода и электронов и по своим привиальным названием известны как дегидрогеназы, оксидазы и пероксидазы. Эти ферменты отличаются тем, что имеют специфические коферменты и простетические группы. Их подразделяют на функциональные группы доноров, от которых они принимают водород или электроны, и акцепторов, на которые они их передают (на СН-ОН группу, СН- NH группу, C-NH группу и другие).
ТРАНСФЕРАЗЫ – ферменты, переносящие атомные группы ( в зависимости от отготого, перенос какой группы они осущевствляют, их соответственно называют). Среди них известны ферменты осущевствляющие транспорт больших остатков, например гликозилтрансферазы и другие. Трансферазы Трансферазы благодаря разнообразию переносимых ими остатков принимают участие в промежуточном обмене веществ.
ГИДРОЛАЗЫ – ферменты, катализирующие гидролитическое расщепление различных субстратов (при участии молекул воды). В зависимости от этого среди них различают эстеразы, расщипляющие сложноэфирную связь между карбоновыми кислотами (липаза) тиоловых эфиров, фосфоэфирную связь и так далиедалее; гликозидазы, расщепляющие гликозидные связи, пептид - гидролазы, действует на пептидную связь и другие.
ЛИАЗЫ. К этой группе относятся ферменты, способные отщеплять различные группы от субстрата негидролитическимне гидролитическим путём с образованием двойных связей или, напротив, присоединять группы к двойной связи. При расщеплении образуется Н2О или СО2 или большие остатки- например ацетил- СоА. Лиазы играют весьма важную роль в процессе обмена веществ.
ИЗОМЕРАЗЫ – ферменты, катализирующие превращение изомерных форм друг в друга, то - есть осуществляющие внутримолекулярное превращение различных групп. К ним относятся не только ферменты, стимулирующие реакции взаимных переходов оптических и геометрических изомеров, но и такие, которые могут способствовать превращению альдоз в кетозы или перемещению эфирной связи и другие.
ЛИГАЗЫ.
Раньше эти ферменты не отделяли от лиаз,
так как реакция последних часто идёт
в двух направлениях, однако недавно было
выяснено, что синтез и распад в большинстве
случаев происходит под влиянием различных
ферментов, и на этом основании выделен
отдельный класс лигаз (синтетаз). Ферменты,
обладающие двойным действием, получили
название бифункциональных. Лигазы принимают
участие в реакции соединения двух молекул,
то-естьто есть синтетических процессах,
сопровождающихся расщеплением макроэнергитических
связей АТФ или других макроэргов.
Мутации (от латинского mutatio - изменение) - внезапные, возникающие естественно или вызываемые искусственно изменения наследственных свойств организма в результате перестроек и нарушений в генетическом материале организма - хромосомах и генах. Мутации обладают следующими свойствами:
возникают внезапно, скачкообразно;
передаются из поколения в поколение (наследуются);
ненаправленны, т.е. под действием одного фактора может мутировать любой участок хромосомы;
одни и те же мутации могут возникать повторно.
Факторы, способные вызывать мутации, называются мутагенными. Их воздействие на живые организмы приводит к появлению мутаций с частотой, превышающей уровень спонтанных мутаций. Различают следующие мутагенные факторы:
физические (к ним относятся все виды ионизирующих излучений - гамма- и рентгеновские лучи, протоны, нейтроны и др., ультрафиолетовое излучение, высокие и низкие температуры);
химические (многие алкилирующие соединения, аналоги азотистых оснований нуклеиновых кислот, некоторые биополимеры - чужеродные ДНК или РНК, алкалоиды и многие другие);
биологические (вирусы, бактерии).
Часто мутагенные факторы называют мутагенами (от мутации и греческого genes - рождающий, рождённый). Мутагены, увеличивающие частоту мутаций в сотни раз (нитропроизводные мочевины) называются супермутагенами.
Процесс образования мутаций с помощью физических или химических мутагенов называется мутагенезом. Последний является одним из важнейших приёмов экспериментальной генетики. Часто термины "мутагенез" и "мутационный процесс" отождествляются, что не оправдано, т.к. мутационный процесс - это многоэтапный процесс возникновения спонтанных или индуцированных мутаций, а мутагенез - это процесс индукции мутаций.
Мутации называют прямыми, если их проявление приводит к отклонению признаков от так называемого дикого типа, наиболее распространённого в природе, и обратными (реверсиями), если их проявление приводит к полному или частичному восстановлению дикого типа.
Мутации бывают:
генеративными (происходят в половых клетках и в этом случае передаются последующим поколениям);
соматическими (происходят в любых других - соматических - клетках организма и в этом случае наследуются только при вегетативном размножении);
ядерными (затрагивают хромосомы ядра);
цитоплазматическими (затрагивают генетический материал, заключённый в цитоплазматических органоидах клетки - митохондриях, пластидах и т.п.).
В зависимости от характера изменений в генетическом материале различают следующие мутации: точковые, инсерции, хромосомные перестройки или аберрации, и мутации, заключающиеся в изменении числа хромосом.
Точковые мутации представляют собой вставки или выпадения, а также изменения (транзиции и трансверсии) пары нуклеотидов ДНК (или нуклеотида РНК). Они могут изменять функцию отдельных генов, а также нескольких соседних генов одного оперона в случае полярного эффекта, т.е. выключения всех генов, расположенных дистально от оператора по отношению к возникшей мутации (полярные мутации).
Инсерции - вставки молекул ДНК в ген, приводящие чаще всего к его инактивации или сильному полярному эффекту в оперонах.
Хромосомные
перестройки возникают в
делеции, в том числе дефишенси (концевые нехватки хромосом);
инверсии, дупликации, транслокации, транспозиции - перемещения участков генетического материала, соизмеримых по длине с геном, между хромосомами или в пределах одной хромосомы.
Изменения числа хромосом в клетках организма могут быть кратными гаплоидному набору (анеуплоидия).
В зависимости от возникновения выделяют три главные группы мутаций: генные, хромосомные и геномные. К генным относят все точковые мутации, к геномным - изменения числа хромосом. Хромосомные аберрации могут быть отнесены как к генным, так и к хромосомным мутациям, в зависимости от размера участка, затрагиваемого аберрацией.
Генные (точковые) мутации затрагивают, как правило, один или несколько нуклеотидов, при этом один нуклеотид может превратиться в другой, может выпасть (делеция), продублироваться, а группа нуклеотидов может развернутся на 180 градусов. Например, широко известен ген человека, ответственный за серповидно – клеточную анемию, который может привести к летальному исходу. Соответствующий нормальный ген кодирует одну из полипептидных цепей гемоглобина. У мутантного гена нарушен всего один нуклеотид (ГАА на ГУА). В результате в цепи гемоглобина одна аминокислота заменена на другую(вместо глутамина – валин). Казалось бы ничтожное изменение, но оно влечет за собой роковые последствия: эритроцит деформируется, приобретая серповидно – клеточную форму, и уже не способен транспортировать кислород, что и приводит к гибели организма. Генные мутации приводят к изменению аминокислотной последовательности белка. Наиболее вероятное мутация генов происходит при спаривании тесно связанных организмов, которые унаследовали мутантный ген у общего предка. По этой причине вероятность возникновения мутации повышается у детей, чьи родители являются родственниками. Генные мутации приводят к таким заболеваниям, как амавротическая идиотия, альбинизм, дальтонизм и др.
Хромосомные мутации приводят к изменению числа, размеров и организации хромосом, поэтому их иногда называют хромосомными перестройками. Хромосомные перестройки делятся на внутри- и межхромосомные. К внутрихромосмным относятся:
Дубликация – один из участков хромосомы представлен более одного раза.
Делеция – утрачивается внутренний участок хромосомы.
Инверсия –повороты участка хромосомы на 180 градусов.
Межхромосомные перестройки (их еще называют транслокации) делятся на:
Реципрокные – обмен участками негомологичных хромосом.
Нереципрокные – изменение положения участка хромосомы.