Мейоз. Особенности первого и второго деления. Биологическое значение мейоза

Автор работы: Пользователь скрыл имя, 03 Ноября 2011 в 13:25, контрольная работа

Описание

Мейозом называется особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Часто уменьшение числа хромосом называется редукцией. Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n).

Работа состоит из  1 файл

Мейоз.docx

— 284.21 Кб (Скачать документ)

     Мейоз 

     Мейозом называется особый способ деления эукариотических  клеток, при котором исходное число хромосом уменьшается в 2 раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение). Часто уменьшение числа хромосом называется редукцией. Исходное число хромосом в мейоцитах (клетках, вступающих в мейоз) называется диплоидным хромосомным числом (2n) Число хромосом в клетках, образовавшихся в результате мейоза, называется гаплоидным хромосомным числом (n). Минимальное число хромосом в клетке называется основным числом (x). Основному числу хромосом в клетке соответствует и минимальный объем генетической информации (минимальный объем ДНК), который называется геном. Количество геномов в клетке называется геномным числом (Ω). У большинства многоклеточных животных, у всех голосеменных и многих покрытосеменных растений понятие гаплоидности–диплоидности и понятие геномного числа совпадают. Например, у человека n=x=23 и 2n=2x=46.

     Типичный  мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому первое мейотическое деление называют редукционным, реже – гетеротипным. Во втором делении число хромосом не изменяется; такое деление называют эквационным (уравнивающим), реже – гомеотипным. Выражения «мейоз» и «редукционное деление» часто используют как синонимы.

     Интерфаза

     Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Таким образом, деление клетки начинается на синтетической стадии клеточного цикла. Поэтому мейоз образно называют преждевременным митозом. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение таким образом, что в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

     Первое  деление мейоза (редукционное деление, или мейоз I)

     Сущность  редукционного деления заключается  в уменьшении числа хромосом в  два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

     Профаза 1 (профаза первого  деления) состоит  из ряда стадий:

     В первой стадии - лептотене, следующей непосредственно за окончанием предмейотического синтеза ДНК, выявляются тонкие длинные хромосомы. Они отличаются от в профазе митоза двумя особенностями: во-первых, в них не обнаруживается двойственность, т. е. не видно сестринских хроматид, во-вторых, лептотенные хромосомы имеют выраженное хромомерное строение. Хромомеры - узелки. Участки плотной компактизации ДНК, размеры и расположение которых строго видоспецифично. Хромомеры встречаются как в мейотических, так и в митотических хромосомах, однако в последних без специфической обработки они не видны.

     Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это хромосомы, сходные между собой в морфологическом и генетическом отношении. У нормальных диплоидных организмов гомологичные хромосомы – парные: одну хромосому из пары диплоидный организм получает от матери, а другую – от отца. При конъюгации образуются биваленты. Каждый бивалент – это относительно устойчивый комплекс из одной пары гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Один синаптонемальный комплекс может связывать только две хроматиды в одной точке. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

     Третья  стадия профазы I деления - пахитена - у большинства видов самая длительная. Под световым микроскопом видны конъюгировавшие хромосомы с более или менее четко выраженным хромомерным строением. Приблизительно в середине пахитены между хроматидами гомологичных хромосом появляется продольная щель, которая ясно показывает, что бивалент - это, по существу, четверная хромосомная структура. В пахитене происходит важное генетическое событие - кроссинговер, или перекрест хроматид гомологичных хромосом. В результате этого в каждом гомологе смешиваются отцовский и материнский наследственный материал.

     Рис. 5.9. Многократный кроссинговер между гомологичными хромосомами:

     А—Е, а—е — локусы хромосом

     Результаты  кроссинговера становятся заметными  лишь в четвертой и пятой стадиях  профазы I деления -  диплотене и диакинезе. Диплотена начинается с момента расхождения гомологичных хромосом. В это время в точках кроссинговера видны перекрещенные хроматиды. Область перекреста хроматид называют хиазмой. Число хиазм в целом соответствует количеству актов кроссинговера в биваленте и пропорционально длине гомологичных хромосом, его составляющих.

     Диакинез (стадия расхождения бивалентов) характеризуется максимальной спирализацией, укорочением и утолщением хромосом. Хиазмы постепенно терминализуются, т. е. приближаются к концам бивалента и спадают с него. Таким образом, по мере приближения к метафазе первого деления число хиазм уменьшается. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

      

     Рис. 5.8. Стадия диакинеза в мейозе у человека. Стрелками указаны хиазмы.

     Метафаза I (метафаза первого  деления)

     В прометафазе I ядерная оболочка разрушается (фрагментируется). Формируется веретено деления. Далее происходит метакинез – биваленты перемещаются в экваториальную плоскость клетки.

     Анафаза I (анафаза первого  деления)

     Гомологичные  хромосомы, входящие в состав каждого  бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит. Процесс распределения хромосом по дочерним клеткам называется сегрегация хромосом.

     Телофаза I (телофаза первого  деления)

     Гомологичные  двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с. В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

     Интеркинез

     Интеркинез  – это короткий промежуток между  двумя мейотическими делениями. Отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

     Второе  деление мейоза (эквационное деление, или мейоз II)

     В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

     Профаза II (профаза второго  деления)

     Не  отличается существенно от профазы  митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В  каждой из дочерних клеток формируется веретено деления.

     Метафаза II (метафаза второго  деления)

     Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости  могут лежать в одной плоскости, могут быть параллельны друг другу или взаимно перпендикулярны.

     Анафаза II (анафаза второго  деления)

     Хромосомы разделяются на хроматиды (как при  митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

     Телофаза II (телофаза второго  деления)

     Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

     Эта классическая схема мейоза имеет  исключения. Например, у растений рода ожика (Luzula) и насекомых семейства кокцид (Coccidae) в первом делении расходятся хроматиды, а во втором - гомологичные хромосомы, однако и в этих случаях в результате мейоза происходит редукция числа хромосом. Различия между сперматогенезом и оогенезом у животных и образованием микроспор и мегаспор у растений не отражаются на поведении хромосом в ходе мейоза, хотя размеры и судьбы сестринских клеток оказываются разными.

     

     Рис. 5.5. Стадии мейоза 

     Типы  мейоза

     В зависимости от места мейоза в  жизненном цикле организмов различают 3 типа мейоза.

    1. Гаметный, или терминальный, мейоз (у всех многоклеточных животных и ряда низших растений), происходит в половых органах и приводит к образованию гамет.

    2. Зиготный, или начальный, мейоз (у многих грибов и водорослей), происходит в зиготе сразу после оплодотворения и приводит к образованию гаплоидного мицелия или таллома, а затем спор и гамет.

    3. Споровый, или промежуточный, мейоз (у высших растений), имеет место накануне цветения и приводит к образованию гаплоидного гаметофита, в котором позднее образуются гаметы. У простейших (Protozoa) встречаются все 3 типа Мейоз

     Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения. Ход мейоза находится под контролем генотипа организма, под контролем половых гормонов (у животных), фитогормонов (у растений) и множества иных факторов (например, температуры).

     Биологическое значение мейоза

     Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в следующем:

     1. Поддержание постоянства числа  хромосом при наличии полового  процесса.

     2. Образование большого количества  новых комбинаций негомологичных хромосом.

     3. В процессе кроссинговера имеют место рекомбинации генетического материала.

     Отличия митоза от мейоза

     Отличия мейоза от митоза по итогам:

     1. После митоза получается две  клетки, а после мейоза – четыре.

     2. После митоза получаются соматические клетки (клетки тела), а после мейоза – половые клетки (гаметы – сперматозоиды и яйцеклетки; у растений после мейоза получаются споры).

     3. После митоза получаются одинаковые  клетки (копии), а после мейоза – разные (происходит рекомбинация наследственной информации).

     4. После митоза количество хромосом  в дочерних клетках остается  таким же, как было в материнской, а после мейоза уменьшается в 2 раза (происходит редукция числа хромосом; если бы её не было, то после каждого оплодотворения число хромосом возрастало бы в два раза; чередование редукции и оплодотворения  обеспечивает постоянство числа хромосом).

Рис. 7. Отличие  митоза от мейоза. 

     Отличия мейоза от митоза по ходу

     1. В митозе одно деление, а  в мейозе – два (из-за этого  получается 4 клетки).

     2. В профазе первого деления  мейоза происходит конъюгация (тесное  сближение гомологичных хромосом) и кроссинговер (обмен участками  гомологичных хромосом), это приводит к перекомбинации (рекомбинации) наследственной информации.

Информация о работе Мейоз. Особенности первого и второго деления. Биологическое значение мейоза