Автор работы: Пользователь скрыл имя, 25 Марта 2013 в 13:00, реферат
Бурное развитие наук о жизни во второй половине ХХ в. принесло много великолепных открытий в области биологии. Это - открытие и расшифровка генетического кода, основных звеньев синтеза белка, многих метаболических процессов в живой клетке и т.д. Началась интенсивная работа по расшифровке генома человека, растений и животных. Казалось бы, мы знаем уже почти все о процессах в живой клетке, осталось только расшифровать геномы, понять процессы их дифференцирования и развития и приступить к созданию новых искусственных геномов, замене дефектных участков геномов, взять под контроль активность генов и т.д. Все эти задачи поставлены объективно на основании накопленных знаний. Однако полных ответов о происхождения жизни, ее разнообразии и эволюции мы так и не получили.
Опухоль, рак - короче, патология, а в норме, в живой, цветущей природе подобное есть? Вне всякого сомнения. Хотя и с определенной оговоркой.
Из школьного курса зоологии всем известна пресноводная гидра - величиной около двух сантиметров хищный полип, обитающий в водоемах. По-видимому, впервые на гидру как бессмертный организм указал французский биолог П. Бриан в конце 60-х годов ХХ века. С тех пор это животное прочно вошло в геронтологическую литературу и, став своеобразным общим местом, пребывает там в гордом одиночестве: другого подобного примера не найдено. Действительно, в оптимальных условиях гидра живет неограниченно долго, никак не меняясь, не старея. Иначе говоря, она - бессмертна. В чем же дело?
В верхней части тела гидры, чуть ниже щупалец, находится зона, где особенно много постоянно делящихся клеток. Отсюда новые клетки "сползают" к концам тела, где дифференцируются (в покровные, нервные, стрекательные и так далее), однако через некоторое время их вытесняют новые молодые клетки, приходящие из зоны интенсивной пролиферации. И так - неостановимо, без конца. Но при одном непременном условии: благоприятной внешней среде. Стоит случиться незначительному природному катаклизму - изменению температуры или состава воды - и деление клеток замедляется, гидра стареет и гибнет. Поэтому гидра бессмертна лишь потенциально. А точнее, сама по себе - как биологический объект - она абсолютно бессмертна, однако при взаимодействии с внешней средой (без этого жизнь невозможна) абсолютное бессмертие становится относительным. И связано это с тем, что в отличие от млекопитающих, в том числе человека, зависимость гидры от условий среды чрезвычайно велика, поскольку крайне слаба регуляция ее организма, узка норма реакции. Вот опять принцип рифмы: вне среды - совершенство, бессмертие; плюс среда - подверженность любой напасти, старение, смерть.
И получается, что мы,
которым не дано бессмертия ни абсолютного,
ни относительного, не хуже гидры, а много
лучше. Единственное, в чем она нас действительно
превосходит, так это в удивительной устойчивости
к механическим повреждениям: способность
гидры к регенерации уникальна - тут ей
вообще нет равных в природе, что, между
прочим, и послужило поводом для мифологического
имени, которое она носит.
Как видите, еще на заре эволюции
природа честно пыталась создать бессмертный
организм, но ничего путного у нее не вышло
- получилась "нежить". Тогда был испробован
подход прямо противоположный - создать
нечто, пусть не бессмертное в принципе,
зато более надежное в сути, а именно: организм
из ограниченного числа жестко специализированных
и незаменяемых клеток. Получились насекомые.
И надо признать, этот подход в определенном,
биологическом смысле оказался удачным:
насекомые и сегодня - самая многочисленная
и процветающая группа животных, если
иметь в виду их видовое разнообразие
и повсеместное распространение. Однако
не только о бессмертии - об относительном
долгожительстве тут нет и речи! Причина?
У жестко специализированных клеток, из
которых состоят насекомые, срок службы
крайне ограничен, а резерва для их замены
природа в данном случае не предусмотрела.
То есть по сравнению с гидрой надежность
повысилась, но все-таки явно недостаточно
- если, конечно, держать в уме замысел
создания не только самовоспроизводящегося,
но и долгоживущего организма, - в общем,
пусть относительного, а совершенства.
Короче говоря, нужен был третий
путь. Естественно, природа, с одной стороны,
использовала свой прошлый положительный
опыт (принцип жесткой специализации клеток),
а с другой - исправила допущенную там
же ошибку: многократно продублировала
клетки, которые незаменяемы, это раз,
и создала резерв для тех клеток, которые
заменить можно, это два. Вот в этих-то
"раз и два" и состояла великая новация,
ибо таким способом была действительно
отлажена система высокой надежности
организма. И как следствие этой надежности
- возможность жить достаточно долго, хотя
ни о каком бессмертии речь, понятно, уже
не шла.
Получились высшие животные.
В том числе и люди. Мы, как известно, не
только одни из самых долгоживущих на
Земле, но и одни из самых устойчивых к
всевозможным воздействиям, хотя бы к
радиации. И если мерить не абсолютной,
а относительной шкалой (конкретно шкалой
именно эволюционной), то, признаем, организм
человека отлажен прекрасно.
Теперь ясно, в чем наше преимущество.
Конечно, в существенно более совершенной
регуляции и возможности поддерживать
постоянство внутренней среды организма
в ответ на воздействия внешних факторов.
Короче, в более совершенном гомеостазе,
а именно он, как заметил Клод Бернар, есть
условие свободы. Вот такой свободой (в
биологическом понимании, конечно) мы
и обладаем - в достаточно широких пределах
и достаточно долгое время, в среднем лет
60-70. Именно это - наиболее ценное эволюционное
приобретение, давшее нам, в смысле экологической
независимости очень многое. Поэтому смертный
человек даже в не слишком комфортных
реалиях каменного века жил в десятки
раз дольше "бессмертной" гидры.
И все-таки продолжительность нашей жизни - точней, стабильность жизнедеятельности, - что-то ограничивает. Если воспользоваться терминологией, принятой в математике, принципиально возможны два уровня ограничений - сверху и снизу. Так вот, отбор ограничивает именно снизу - задает минимум, то есть ту продолжительность жизни, которая достаточна для воспроизводства потомства. А что ограничивает сверху? О первом из ограничений речь уже шла: это не доведенная до абсолюта защита клеток от повреждающих факторов, внутренних и внешних. Второе ограничение, а по сути, может быть, первое, связано, как ни парадоксально, еще с одним упомянутым выше колоссальным эволюционным приобретением высших организмов - дифференцировкой и жесткой специализацией клеток.
Чем сложнее организм, тем специализация более выражена - этим достигается эффективность функционирования в целом. Разделение труда клеток абсолютно, и даже по внешнему виду функционально разные зрелые клетки совершенно не похожи друг на друга; нейрон никогда не спутать с гепатоцитом (то есть печеночной клеткой), а последнюю - с мышечной. Такому разделению, предельной специализации клеточных функций, сложный организм и обязан своим совершенством.
Однако подобное совершенство достигается, в том числе, за счет максимального ограничения жизнедеятельности специализированной клетки. Это сравнимо с ограничением функций рабочего на конвейере, а в пределе - с тем, что на конвейере вообще не обязательно "быть живым": можно поставить автомат. Точно так же и в многоклеточном организме: специализированные клетки - не живые в полном смысле этого слова. Зачастую они не в силах поддерживать собственный обмен веществ, совершенно неспособны к делению. Задача у них одна: "бездумно", не заботясь о себе, подобно автомату на конвейере, выполнять ограниченную функцию. А если сбой, поломка, дефект? На сей счет предусмотрено два механизма: первый - многократная дублированность, резервированность зрелых клеток, второй - отработанные клетки заменяются молодыми, свежедифференцированными. И вот здесь многое зависит от того, насколько эффективны эти механизмы страховки. По той же аналогии: можно придумать очень тонкие и высокоточные автоматы и тем существенно повысить класс изготовляемого продукта (эволюционно нового организма), однако это обязывает создавать для их обслуживания специальную аварийную систему, ибо, как известно, где тонко, там и рвется. Вот тут-то природа и оставила себе резерв, чтобы иметь возможность ограничивать сверху: наша аварийная служба надежна достаточно, но не абсолютно. Поэтому, если опять вспомнить гидру или насекомых, мы и живем дольше, и значительно лучше приспособлены к существованию в постоянно и порой резко меняющемся мире, однако запас прочности наших организмов ограничен во времени - с течением лет он постепенно иссякает, и мы стареем.
Мы начали рассматривать бессмертие с гидры и раковых опухолей. Так вот, оказывается, возникновение раковой опухоли - это некий возврат части организма (клеточного пула) к этапу, давно минувшему в эволюции. Путь по лестнице, ведущей вниз.
Специализированные клетки
как бы вспоминают, что когда-то они
были одноклеточными организмами. Они
перестают адекватно
Почему же вообще - не на уровне моделей, а в сущем мире, - бессмертия нет и быть все-таки не может? Ответ: природа жертвует потенциальным бессмертием , чтобы обеспечить пусть ограниченное во времени, зато надежное функционирование организма. Вот эта-то вполне надежная реальность и позволяет воспроизвести и воспитать достаточное по численности и жизнеспособности потомство (достаточное - в плане стабильности вида как такового). Ну, а после выполнения этого предназначения - уж как получится; тут интерес природы к нам явно пропадает.
3.Перспективы использования синтетических клеток
Создатель первой синтетической клетки Крейг Вентер рассказал о перспективах применения своей работы:
Синтетический геном позволит создать экономически выгодное биотопливо, сделать за час вакцину от нового штамма гриппа, а также новые пищевые продукты, считает пионер синтетической биологии Крейг Вентер. Он, однако, полагает, что время использования секвенирования генома в рутинном здравоохранении еще не пришло.
В марте 2012 года в Сан-Диего проходила конференция Американского химического общества, объединяющего около 11 тыс. исследователей-химиков по всему миру. Самые интересные темы, как водится, лежат на стыке наук — химии, биологии, материаловедения, физики. Пленарные доклады были посвящены технологиям регенеративной медицины для пожилых людей и пострадавших от травм, созданию синтетических кровеносных сосудов, возможностям химии в криминалистике, а также перспективам производства водорода для альтернативной энергетики с помощью АЭС. Также с пленарным докладом выступил Крейг Вентер — создатель первой синтетической клетки, известный не только выдающимися научными открытиями, но и планами по коммерциализации геномики.
В Сан-Диего Вентер выступил с обзорным докладом «От чтения к написанию генетического кода», в котором задал ориентиры для направления работ с использованием синтетической клетки.
Он выразил уверенность, что искусственный генетический код откроет людям XXI века новые виды топлива, высокоэффективные лекарства, продукты, источники питьевой воды и многое другое.
Вентер также был одним из лидеров гонки в расшифровке генома человека. Его частный исследовательский проект Celera Genomics ноздря к ноздре шел с государственным Human Genome Project. В результате, когда были расшифрованы 23 тыс. человеческих геномов, два научных коллектива заключили мир и в 2001 году одновременно выступили с публикациями.
«Геномика — очень быстро развивающаяся область, и мои научные группы прокладывают путь от чтения генетического кода — секвенирования генома бактерий, людей, растений и других организмов — к его написанию и созданию синтетических клеток для различных применений. Уже сейчас мы можем с нуля создавать синтетические бактериальные клетки, которые планируем приспособить для эффективного производства вакцин, лекарств и биотоплив», — заявил Вентер.
Работы Крейга Вентера принадлежат к новой области «синтетической биологии», которая объединяет в себе и химию, и медицину, и геномику, и ряд других традиционных научных дисциплин. Синтетическая биология появилась из генной инженерии, ставшей сейчас уже довольной привычной: можно вставить один-два новых гена в геном растения или бактерии.
Эти гены могут, например, «научить» помидоры вызревать, не становясь мягкими, или «заставить» бактерии производить искусственный человеческий инсулин для больных диабетом.
Синтетическая биология замахивается на большее — создать целый геном, перепрограммировать целые организмы или даже создавать новые.
Сообщение о создании первой полностью синтетической бактериальной клетки в 2010 году было опубликовано в авторитетном научном журнале Science группой ученых из некоммерческого Института Крейга Вентера. С помощью четко разработанного компьютерного алгоритма ученым удалось создать полностью синтетическую хромосому с геномом.
Когда ее встроили в бактериальную клетку, лишенную генетического материала, она начала функционировать по предписанным новым геномом законам, делиться и размножаться.
Для создания практических коммерческих приложений синтетического генома Вентер создал отдельную компанию Synthetic Genomics Inc. (SGI). Одна из ее амбициозных задач — создать микроводоросли, которые будут захватывать атмосферный диоксид углерода гораздо эффективнее, чем существующие в природе. В свою очередь, именно микроводоросли считаются наиболее перспективным источником биотоплив.
Другая важная задача — модификация генома бактерий для создания эффективных и безвредных вакцин против новых штаммов гриппа в течение часов, а не месяцев, как это происходит сегодня. Создание такой технологии смогло бы победить главное преимущество вируса гриппа — его потрясающую изменчивость. Человеческий организм, переболев, обретает иммунитет к одному штамму, однако на следующий же год его атакует совершенно новый штамм, перед которым иммунитет бессилен.
Медики начинают бег наперегонки с эпидемией, пытаясь создать новую вакцину. Вентер надеется обогнать грипп, научившись создавать вакцину за несколько часов.
Другой крупный генетический проект Института Вентера — изучение человеческого микробиома. Под этим термином подразумевается расшифровка генома миллиардов бактерий, живущих в теле человека, а также изучение их роли в поддержании нашего здоровья и развитии болезней.
Вместе с тем Вентер сомневается в точности работы устройств для рутинного секвенирования генома, которые могут предоставить эту услугу в любой больнице. Он считает, что пройдут годы, пока полное секвенирование генома человека станет достаточно точным и быстрым, чтобы найти свое место в обычном здравоохранении.
Проблемы и перспективы развития биологии
1.Введение.
2.Проблемы и перспективы развития биологии
2.1.Микробы - польза или вред?
2.2.Геронтология и
2.3.Перспективы использования синтетических клеток.
3.Заключение.
4.Список использованной литературы.
Информация о работе Проблемы и перспективы развития биологии