Происхождение жизни

Автор работы: Пользователь скрыл имя, 23 Марта 2013 в 15:06, курсовая работа

Описание

С момента возникновения жизни природа находится в непрерывном развитии. Процесс эволюции продолжается уже сотни миллионов лет, и его результатом является то обилие форм живого, которое во многом до конца еще не описано и не классифицировано. Эволюция протекает на всех уровнях организации живой материи и на каждом уровне характеризуется новообразованием структур и появлением новых функций. Объединение структур и функций одного уровня сопровождается переходом живых систем на более высокий эволюционный уровень.

Содержание

Введение………………………………………………………..........…………….2
1. Современные представления о происхождении жизни на Земле.......………3
2. Основные законы биологической эволюции…………………………..........16
3. Микро и макроэволюция………………………………………………..........20
Заключение……………………………………………………………….............28
Список используемой литературы……………………………

Работа состоит из  1 файл

Курсова.rtf

— 368.96 Кб (Скачать документ)

Отдельные группы земных микроорганизмов, примитивных грибов, дрожжей и водорослей могут не только выжить, но и размножаться в условиях, существующих в криосфере и на поверхности Марса или в океанах Европы. И все же, несмотря на космическую распространенность органических веществ, гипотеза панспермии до сих пор не получила материального подтверждения, хотя массовая печать неоднократно в форме сенсаций сообщала об обнаружении в метеоритах окаменелостей микроорганизмов. Главным недостатком этой гипотезы является то, что перенос места возникновения земной жизни с поверхности Земли в глубины Вселенной не решает вопроса о происхождении жизни из неживой материи.

Концепция стационарного состояния жизни. По мнению В.И. Вернадского, необходимо говорить об извечности жизни и проявлений её организмов, как мы говорим об извечности материального субстрата небесных тел, их тепловых, электрических, магнитных параметров и их проявлений. Далек от научных исканий вопрос о начале жизни, как и вопрос о начале материи, теплоты, электроэнергии, магнетизма, движения. Все живое вышло от живого (принцип Реди). Примитивные одноклеточные организмы могли появиться лишь в биосфере Земли, а шире, в биосфере Вселенной. По мнению Вернадского, естественные науки построены на предположении, что жизнь с её особыми свойствами не играет никакой роли в жизни Вселенной. Но биосферу необходимо брать как целое, как единый живой космический организм (тогда и отпадает вопрос о начале живого, о скачке от неживого к живому) [8. С. 12].

Гипотеза «голобиоза» касается прообраза доклеточного предка и его способностей. Есть разные формы доклеточного предка - «биоид», «биомонада», «микросфера». Согласно биохимику П. Деккера, структурную базу «биоида» составляют «жизнеподобные» неравновесные диссипативные (от лат. «dissipate») структуры, т.е. открытые микросистемы с ферментативным аппаратом, катализирующим метаболизм биоида. Эта гипотеза трактует активность доклеточного предка в обменно-метаболическом духе. В рамках гипотезы «голобиоза» конструировали биохимики С.Фокс и К.Дозе свои биополимеры, способные к метаболизму - комплексному белковому синтезу. Основной недостаток данной гипотезы - отсутствие генетической системы при таком синтезе. Отсюда - следует отдать предпочтение «молекулярному прародителю» всякого живого, а не первичной протоклеточной структуре.

Гипотеза «генобиоза». Американский ученый Холдейн считал, что первичной была не структура, способная к обмену веществ с окружающей средой, а макромолекулярная система, подобная гену и способная к репродукции, а потому и названным им «голым геном». Общее признание гипотеза «генобиоза» получила после открытия РНК и ДНК и их феноменальных параметров. В начале 80-х гг. 20 века была установлена способность РНК к саморепродуцированию в отсутствии белковых ферментов. Второй момент - открытие у РНК автокаталитических функций. Объединение двух функций - каталитической и информационно-генетической - привело к тому, что макромолекулярная система стала способной к саморепродукции. Т.е. старая РНК кооперируя в себе черты фенотипа и генотипа, могла быть подвержена как генетическим преобразованиям, так и естественному отбору, т. е. она эволюционировала.

Итак, РНК сыграла первостепенную роль в зарождении жизни. Но мы же знаем, что современный геном биосферы составляет ДНК, а не РНК. Но как это объяснить? Ревертаза и матричный синтез с ДНК на РНК явились компонентами одного для всего живого доклеточного предка. Но эволюция последнего шла в сторону современной ДНК и утраты им самостоятельных каталитических функций. Таким образом, РНК является той первичной информационной молекулой, которая стояла у истоков жизни.

Можно допустить, что обе нуклеиновые кислоты произошли от одной более примитивной молекулы. Усложняясь и специализируясь в процессе эволюции, эта «прануклеиновая» кислота превратилась в функционально различные типы молекул ДНК и РНК. Возможно, что этой первичной нуклеиновой кислотой могла быть молекула, близкая к более простой РНК. Подобно РНК вируса табачной мозаики она обладала способностью к передаче наследственной информации и к синтезу белка. Возможно также, что вирусы содержащие только одну РНК (филогенетически более раннее образование), следует рассматривать как современные модификации древней, примитивной формы жизни [8. С. 15].

Все это может пролить некоторый свет на пути возникновения и развития живых существ от более простых форм управления и примитивной формы жизни к более сложным формам. Если небелковая («неживая») молекула РНК в подходящей среде образует живые системы, то не на этом ли пути можно обнаружить мостик между неживой и живой природой. Решающее слов в этом вопросе принадлежит различным будущим биохимическим и генетическим исследованиям.

Таким образом, основные гипотезы о происхождении жизни на Земле можно разделить на 3 группы:

1) религиозная гипотеза о "божественном" происхождения жизни;

2) "панспермия" - жизнь возникла в космосе и затем была занесена на Землю;

3) жизнь возникла на Земле в результате естественных процессов.

Рассмотрим более подробно закономерности и химические особенности происхождения жизни на земле.

Возникновение и развитие жизни и разума на Земле подготовлено всем ходом эволюции неживой материи Метагалактики. Закономерность и неизбежность возникновения и развития жизни и разума обусловлена одним из важнейших свойств Метагалактики - "антропным принципом". Существование и развитие объектов Метагалактики обусловлено внутренними динамическими процессами. Все возникающие объекты, от космических пылинок и туманностей, бактерий и людей, звезд, галактик и, по-видимому, всей Метагалактики в целом, являются открытыми неравновесными системами, обменивающимися с окружающей средой веществом и энергией. В ходе эволюции возникает способность к воспроизведению подобных объектов и усвоению ими благоприобретенных признаков и свойств. С увеличением сложности структур упорядоченных систем возрастает их способность к накоплению, запоминанию и хранению информации. Информационная эволюция ускоряет темпы самоорганизации материи и идет в направлении уменьшения возможных наборов элементов, определяющих структуру и функционирование сложных систем. Наборы с наименьшим числом элементов легче восстанавливаются, передаются и тиражируются. Для атомов число возможных комбинаций протонов и нейтронов в атомных ядрах равно числу изотопов (свыше 1500). Для молекул возможное число наборов атомов равно количеству элементов таблицы Менделеева (около 100). Для полимеров в растворах - числу 5 пространственных конфигураций. Для живых организмов - количеству нуклеотидов в ДНК и РНК (4). С увеличением сложности структур возрастает зависимость их существования и развития от физических и химических свойств среды и неизменности внешних условий.

Например, температурные границы существования объектов:

- атомов - от 0,5-1 К до 105 К (температура ионизации);

- молекул - от 2-3 К до 104 К (температура диссоциации);

- твердотельных кластеров (объектов, содержащих минимальное число атомов для проявления всех макроскопических свойств данного вещества) - от 10-15К до 5× 103К;

- микроорганизмов - от 100 К до 700 К;

- человека - от 308 К до 312 К [7. С. 142].

Вышесказанное определяет условия, необходимые и достаточные для проявления и развития жизни, возможное время ее возникновения в Метагалактике и на Земле, основные темпы и направления эволюции живых организмов. В раннюю эпоху существования Метагалактики вплоть до образования галактик, жизнь не могла существовать из-за абсолютно неподходящих внешних условий. Не могла она возникнуть вблизи звезд I поколения, которые, скорее всего, не имеют планетных систем из-за 10-40-кратного дефицита тяжелых химических элементов.

Для образования космических тел с современным химическим составом и соотношением изотопов тяжелых элементов их синтез должен был произойти за 4-6 миллиардов лет до образования Солнечной системы, т.е. не позже 9-11 миллиардов лет назад. Образование тяжелых элементов было особенно интенсивным в период формирования основных галактических структур; в нашем районе Галактики период интенсивного звездообразования закончился к моменту образования Солнечной системы.

Химические условия возникновения и развития жизни определяются составом ее молекулярных основ. Нуклеиновые кислоты ДНК и РНК построены из нуклеотидов, состоящих в свою очередь из сахара, азотистых оснований и фосфата; белки состоят из аминокислот. Все химическое разнообразие жизни на Земле исчерпывается 28 веществами: 20 видов аминокислот, 5 оснований, 2 углеводов и 1 фосфата, элементарный химический состав которых состоит из водорода (37,5%), углерода (29,8%), кислорода (18,3%), азота (11,3%), фосфора (3,1%). Водород - самый распространенный химический элемент, углерод, кислород и азот - самые распространенные из тяжелых химических элементов, способные образовывать огромное число сложных и относительно стабильных молекул (благодаря наличию химически инертных соединений углерода). Кислород - активный окислитель, его соединение с водородом Н2О, вода - широко распространенный универсальный биологический химический растворитель, остающийся в жидком состоянии в широком диапазоне температур, обладающий высокой диэлектрической проницаемостью и теплоемкостью.

Химические условия существования жизни налагают ряд дополнительных требований к физическим характеристикам объектов, на которых они могли бы реализоваться [7. С. 135].

Химический состав объекта должен допускать наличие гидросферы и атмосферы приемлемого состава, состоящей из газов, способствующих возникновению и развитию живых организмов и поддерживающих необходимый энергетический режим (температуры и энергетической освещенности) без резких колебаний вышеупомянутых условий и давления. Например, углекислый газ в атмосфере Земли не только основное сырье для фотосинтеза, но и важнейший инструмент для поддержания температуры атмосферы с оптимальной концентрацией 0,03-0,04%. Масса объекта должна обеспечивать силу тяжести, достаточную для удержания постоянной атмосферы достаточной плотности у поверхности космического тела без перехода атмосферных газов в другие агрегатные состояния.

Орбита космического тела должна лежать в пределах "зоны жизни" данной планетной системы, обеспечивающей достаточную энергетическую освещенность поверхности в приемлемом диапазоне длин волн и иметь малый эксцентриситет во избежание резких колебаний внешних условий на поверхности тела. Объект должен вращаться вокруг своей оси со скоростью, достаточной для установления атмосферной и гидросферной циркуляции и некоторого усреднения физических условий на поверхности.

Всем вышеперечисленным условиям отвечают планетные тела (планетоиды и планеты земной группы) массой от 0,1 до 10 МÅ, входящие в состав планетных систем одиночных, медленновращающихся, обладающих постоянством светимости звезд главной последовательности II и последующих поколений спектральных классов F5-К5. Число планетных тел Галактики с благоприятными условиями для существования жизни определяется формулой:

,

где N* - общее число звезд Галактики (около 2× 109);

fn - доля звезд, имеющих планетные системы (все одиночные медленновращающиеся звезды, от 20 до60 % звезд);

ne - доля звезд, вблизи которых могут быть благоприятные для жизни условия (для звезд классов F5-К5 около 0,01-0,02).

Если в каждой из вышеуказанных планетных систем "обитаема" лишь одна планета, то в настоящее время в Галактике может быть от 40 до 240 миллионов планет, на которых существует жизнь. Даже если по каким-либо причинам вероятность возникновения жизни в сотни и тысячи раз меньше, в Галактике сейчас должны быть сотни тысяч и миллионы населенных планетных тел. Для Галактики это очень маленькая величина. Так, на расстоянии до 5 парсек (16,3 св. года) от Солнца насчитывается 53 звезды, из которых лишь 3 - e Эридана, t Кита и e Индейца - удовлетворяют вышеупомянутым условиям; однако у e Эридана планетная система находится в стадии формирования.

В настоящее время в научных лабораториях подробно исследованы и воспроизведены первые этапы эволюции от "неживой" к "живой" материи:

1. Эволюция малых молекул (CH4, H2O, NH3, CO и т.д.).

2. Образование полимеров.

3. Возникновение каталитических функций.

Ведутся исследования последующего этапа эволюции - самосборки молекул-гиперциклов, возникновению биологических мономеров (аминокислот, азотистых оснований и т.д.) и биополимеров, накоплены определенные сведения по следующему этапу - возникновению мембран и доклеточной организации. К сожалению, весьма далеки от окончательного понимания два важнейших заключительных этапа превращения "неживого" в "живое" - возникновение механизма наследственности и возникновение клетки. Основой жизни в Метагалактике могут являться:

1) Широко распространенные химические элементы IV-VI групп таблицы Менделеева (углерод, кремний, кислород, фтор, азот, фосфор, сера и т.д.), способные образовывать сложные молекулярные цепочки, выполняющие функции органических молекул.

2) Химические соединения (вода H2O, аммиак NH3, смесь воды с аммиаком, сероводород H2S, синильная кислота HCN, фтористый водород HF и т.д.), обладающие свойством быть одновременно кислотой и основанием: они способны стать биологическими растворителями. Водородная связь определяет структуру белков, нуклеиновых кислот и других органических соединений и их возможных аналогов [8. С. 36].

"Аммиачная" жизнь является второй по вероятности распространенности после земной, основанной на соединениях углерода и воде. Аммиак обладает достаточно высокими теплотой плавления, парообразования и теплоемкостью, остается жидким в диапазоне температур от -77,7њ С до -33,4њ С при нормальном давлении; при возрастании давления температура кипения увеличивается (до +132,4њ С при р = 112 атм.). Океаны и моря из жидкого аммиака (или смеси аммиака с водой и гидроксиламином NH2OH) будут так же эффективно смягчать колебания температуры, как гидросфера Земли. Аммиак обладает некоторыми биологическими преимуществами перед водой (большей текучестью, способностью растворять органические соединения и т.д.). "Аммиачная" жизнь может процветать на относительно холодных планетах земной группы и плаентоидах с плотными атмосферами.

В плотных атмосферах планет-гигантов в условиях низких температур (от - 100њ С до - 50њ С) может возникнуть сероводородная жизнь. Жизнь может появиться и на поверхности планетных тел с плотными атмосферами из смеси газов CS2, COS, CH4, N2, Ar, и гидросферами из сернистого ангидрида SO2 (Тзамерзания = - 75,5њ С, Ткипения = - 10,2њ С при р = 1 атм).

Кремний может успешно заменить углерод и быть цепочкообразующим элементом органических систем, молекулы которых основаны на связях Si-O-Si или Si-N-Si. "Кремниевая" жизнь может встретиться на планетах, обладающих очень плотными горячими (Т³ 300њ С) атмосферами, обращающихся на небольшом расстоянии вокруг массивных горячих звезд.

Информация о работе Происхождение жизни