Автор работы: Пользователь скрыл имя, 13 Марта 2012 в 16:37, реферат
Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание.
Введение………………………………………………………………...
3
Глава I. Основные свойства мирового океана………………………..
Глава II. Основные свойства водной среды…………………………..
4
2.1
Плотность воды…………………..…………………………………….
5
2.2
Кислородный режим водоемов………………………………………..
5
2.3
Солевой режим водоемов……………………………………………...
6
2.4
Температурный режим водоемов……………………………………..
7
2.5
Солевой режим водоемов……………………………………………...
8
Глава III. Специфические приспособления гидробионтов………….
3.1
Способы ориентации животных в водной среде……………………..
10
3.2
Фильтрация как тип питания…………………...……………………..
10
3.3
Специфика приспособлений к жизни в пересыхающих водоемах…
10
Глава IV. Животные……………………………………………………
11
III.
4.1
4.2
Глава вторая
Подцарство Одноклеточные или простейшие……………………….
Тип Саркомастигофоры……………………………………………….
12
4.3
Тип Инфузории или Ресничные………………………………………
Глава. Подцарство многоклеточные………………………………….
12
5.1
Тип Губки……………………………………………………………….
13
5.2
5.3
Тип Кишечнополостные……………………………………………….
Тип Кольчатые черви…………………………………………………..
13
5.4
Тип Моллюски, или мягкотелые……………………………………...
14
5.5
5.6
Тип Членистоногие…………………………………………………….
Тип Хордовые…………………………………………………………..
15
Глава VI. Растения. Водоросли...……………………………………...
16
6.1
Отдел Сине - зеленые водоросли……………………………………...
18
6.2
Отдел Зеленые Водоросли ……………………………………………
19
6.3
Отдел Диатомовые ……………………………………………………
22
6.4
Отдел Бурые Водоросли……………………………………………….
23
6.5
Отдел Красные Водоросли ……………………………………………
Заключение…………………………………………………………….
Список литературы……………………………
Министерство сельского хозяйства Российской Федерации
ФГОУ ВПО Тюменская государственная
сельскохозяйственная академия
Агротехнологический институт
Кафедра экологии и рационального природопользования
РЕФЕРАТ
на тему: «Водная среда жизни»
Исполнитель:
Руководитель:
Тюмень, 2009
Содержание
| Введение………………………………………………………… | 3 |
| Глава I. Основные свойства мирового океана………………………..
Глава II. Основные свойства водной среды…………………………..
|
4 |
2.1 | Плотность воды…………………..……………………………………. | 5 |
2.2 | Кислородный режим водоемов……………………………………….. | 5 |
2.3 | Солевой режим водоемов……………………………………………... | 6 |
2.4 | Температурный режим водоемов…………………………………….. | 7 |
2.5 | Солевой режим водоемов……………………………………………... | 8 |
| Глава III. Специфические приспособления гидробионтов………….
|
|
3.1 | Способы ориентации животных в водной среде…………………….. | 10 |
3.2 | Фильтрация как тип питания…………………...…………………….. | 10 |
3.3 | Специфика приспособлений к жизни в пересыхающих водоемах…
| 10 |
| Глава IV. Животные…………………………………………………… | 11 |
III. 4.1 4.2 | Глава вторая Подцарство Одноклеточные или простейшие………………………. Тип Саркомастигофоры…………………………………… |
12 |
4.3 | Тип Инфузории или Ресничные………………………………………
Глава. Подцарство многоклеточные…………………………………. | 12 |
5.1 | Тип Губки………………………………………………………………. | 13 |
5.2 5.3 | Тип Кишечнополостные…………………………………… Тип Кольчатые черви………………………………………………….. |
13 |
5.4 | Тип Моллюски, или мягкотелые……………………………………... | 14 |
5.5 5.6 | Тип Членистоногие…………………………………………… Тип Хордовые…………………………………………………………
| 15
|
| Глава VI. Растения. Водоросли...……………………………………... | 16 |
6.1 | Отдел Сине - зеленые водоросли……………………………………... | 18 |
6.2 | Отдел Зеленые Водоросли …………………………………………… | 19 |
6.3 | Отдел Диатомовые …………………………………………………… | 22 |
6.4 | Отдел Бурые Водоросли………………………………………………. | 23 |
6.5 | Отдел Красные Водоросли ……………………………………………
Заключение……………………………………………………
Список литературы…………………………………………………… | 24 |
|
|
|
|
|
|
|
|
|
|
|
|
Введение.
На нашей планете живые организмы освоили четыре основные среды обитания. Водная среда была первой, в которой возникла и распространилась жизнь. Только потом организмы овладели наземно-воздушной, создали и заселили почву и сами стали четвертой специфической средой жизни.
По мнению большинства авторов, изучающих возникновение жизни на Земле, эволюционно первичной средой жизни была именно водная среда. Этому положению мы находим не мало косвенных подтверждений. Прежде всего, большинство организмов не способны к активной жизнедеятельности без поступления воды в организм или, по крайней мере, без сохранения определенного содержания жидкости внутри организма. Внутренняя среда организма, в которой происходят основные физиологические процессы, очевидно, по-прежнему сохраняет черты той среды, в которой происходила эволюция первых организмов. Так, содержание солей в крови человека (поддерживаемое на относительно постоянном уровне) близко к таковому в океанической воде. Свойства водной океанической среды во многом определили химико-физическую эволюцию всех форм жизни.
Пожалуй, главной отличительной особенностью водной среды является ее относительная консервативность. Скажем, амплитуда сезонных или суточных колебаний температуры в водной среде намного меньше, чем в наземно-воздушной. Рельеф дна, различие условий на различных глубинах, наличие коралловых рифов и проч. создают разнообразие условий в водной среде.
Особенности водной среды проистекают из физико-химических свойств воды. Так, большое экологическое значение имеют высокая плотность и вязкость воды. Удельная масса воды соизмерима с таковой тела живых организмов. Плотность воды примерно в 1000 раз выше плотности воздуха. Поэтому водные организмы (особенно, активно движущиеся) сталкиваются с большой силой гидродинамического сопротивления. Эволюция многих групп водных животных по этой причине шла в направлении формирования формы тела и типов движения, снижающих лобовое сопротивления, что приводит к снижению энергозатрат на плавание. Так, обтекаемая форма тела встречается у представителей различных групп организмов, обитающих в воде, - дельфинов (млекопитающих), костистых и хрящевых рыб.
Высокая плотность воды является также причиной того, что механические колебания (вибрации) хорошо распространяются в водной среде. Это имело важное значение в эволюции органов чувств, ориентации в пространстве и коммуникации между водными обитателями. Вчетверо большая, чем в воздухе, скорость звука в водной среде определяет более высокую частоту эхолокационных сигналов. В связи с высокой плотностью водной среды ее обитатели лишены обязательной связи с субстратом, которая характерна для наземных форм и связана с силами гравитации. Поэтому есть целая группа водных организмов (как растений, так и животных), существующих без обязательной связи с дном или другим субстратом, "парящих" в водной толще.
Электропроводность открыла возможность эволюционного формирования электрических органов чувств, обороны и нападения.
Все обитатели водной среды получили в экологии общее название гидробионтов.
Гидробионты населяют Мировой океан, континентальные водоемы и подземные воды.
Глава I. Экологические зоны Мирового океана
В любом водоеме можно выделить различные по условиям зоны. В океане вместе с входящими в него морями различают прежде всего две экологические области: пелагиаль – толща воды и бенталь – дно.
В зависимости от глубины бенталь делится на сублиторальную зону – область плавного понижения суши до глубины примерно 200 м, батиальную – область крутого склона и абиссальную зону – океанического ложа со средней глубиной 3-6 км. Еще более глубокие области бентали, соответствующие впадинам океанического ложа, называют ультрабенталью. Кромка берега, заливаемая во время приливов, называется литоралью. Часть берега выше уровня приливов, увлажняемая брызгами, называется супралиторалью.
Естественно, что, например, обитатели сублиторали живут в условиях относительно невысокого давления, дневного солнечного освещения, часто довольно значительных изменений температурного режима. Обитатели абиссальных и ультраабиссальных глубин существуют во мраке, при постоянной температуре и давлении в несколько сотен, а иногда и около тысячи атмосфер. Поэтому одно лишь указание на то, в какой зоне бентали обитает тот или иной вид организмов, уже говорит о том, какими общими экологическими свойствами он должен обладать.
Все население дна океана получило название бентоса. Организмы, обитающие в толще воды, или пелагиали, относятся к пелагосу. Пелагиаль также делят на вертикальные зоны, соответствующие по глубине зонам бентали: эпипелагиаль, батипелагиаль, абиссопелагиаль. Нижняя граница эпипелагиали (не более 200 м) определяется проникновением солнечного света в количестве, достаточном для фотосинтеза. Зеленые растения глубже этих зон существовать на могут. В сумеречных батиальных и полных мрака абиссальных глубинах обитают лишь микроорганизмы и животные. Разные экологические зоны выделяются и во всех других типах водоемов: озерах, болотах, прудах, реках и т.д. Разнообразие гидробионтов, освоивших все эти места обитания, очень велико.
Экологические зоны мирового океана по А.С. Константинову
Материковая отмель Сублитораль Эпипелагиаль Материковый склон Батипелагиаль Океаническое ложе Абиссопелагиаль
2. Основные свойства водной среды.
2.1 Плотность воды - это фактор, определяющий условия передвижения водных организмов и давление на разных глубинах. Для дистиллированной воды плотность равна 1 г/см3 при +40С. Плотность природных вод, содержащих растворенные соли, может быть больше, до 1, 35 г/см3. Давление возрастает с глубиной примерно в среднем на 1 атмосферу на каждые 10 м.
В связи с резким градиентом давления в водоемах гидробионты в целом значительно более эврибатны по сравнению с сухопутными организмами. Некоторые виды, распространенные на разных глубинах, переносят давление от нескольких до сотен атмосфер.
Однако многие обитатели морей и океанов относительно стенобатны и приурочены к определенным глубинам. Стенобатность обычно свойственна мелководным и глубоководным видам.
Плотность воды обеспечивает возможность опираться на нее, что особенно важно для бесскелетных форм. Опорность среды служит условием парения в воде, и многие гидробионты приспособлены именно к этому образу жизни. Взвешенные, парящие в воде организмы объединяют в особую экологическую группу гидробионтов - планктон.
В составе планктона - одноклеточные водоросли, простейшие, медузы, сифонофоры, гребневики, крылоногие и киленогие моллюски, разнообразные мелкие рачки, личинки донных животных, икра и мальки рыб и многие другие. Планктонные организмы обладают многими сходными адаптациями, повышающими их плавучесть и препятствующими оседанию на дно. К таким приспособлениям относятся: 1) общее увеличение поверхности тела за счет уменьшения размеров, сплющенности, удлинения, развития многочисленных выростов и щетинок, что увеличивает трение о воду; 2) уменьшение плотности за счет редукции скелета, накопления в теле жиров, пузырьков газа и т.д.
Одноклеточные водоросли - фитопланктон - парят в воде пассивно, большинство же планктонных животных способно к активному плаванию, но в ограниченных пределах. Планктонные организмы не могут преодолевать течения и переносятся ими на большие расстояния. Многие виды зоопланктона способны ,однако, на к вертикальным миграциям в толще воды на десятки и сотни метров как за счет активного передвижения, так и за счет регулирования плавучести своего тела. Особую разновидность планктона составляет экологическая группа нейстона - обитатели поверхностной пленки воды на границе с воздушной средой.
Плотность и вязкость воды сильно влияют на возможность активного плавания. Животных, способных к быстрому плаванию и преодолению силы течений, объединяют в экологическую группу нектона. Представители нектона - рыбы, кальмары, дельфины. Быстрое движение в водной толще возможно лишь при наличии обтекаемой формы тела и сильно развитой мускулатуры. Торпедовидная форма вырабатывается у всех хороших пловцов, независимо от их систематической принадлежности и способа движения в воде: реактивного, за счет изгибания тела, с помощью конечностей.
2.2. Кислородный режим.
Коэффициент диффузии кислорода в воде примерно в 320 тыс. раз ниже, чем в воздухе, а общее содержание его не превышает 10 мл в 1 литре воды, это в 21 раз ниже, чем в атмосфере. Поэтому условия дыхания гидробионтов значительно усложнены. Кислород поступает в воду в основном за счет фотосинтетической деятельности водорослей и диффузии из воздуха. Поэтому верхние соли водной толщи, как правило, богаче кислородом, чем нижние. С повышением температуры и солености воды концентрация в ней кислорода понижается. В слоях, сильно заселенных бактериями и животными, может создаваться резкий дефицит кислорода из-за усиленного его потребления.
Среди водных обитателей много видов, способных переносить широкие колебания содержания кислорода в воде, вплоть до почти полного его отсутствия (эвриоксибионты). Вместе с тем ряд видов стеноксибионтны - они могут существовать лишь при достаточно высоком насыщении воды кислородом. Многие виды способны при недостатке кислорода впадать в неактивное состояние - аноксибиоз - и таким образом переживать неблагоприятный период.
Дыхание гидробионтов осуществляется либо через поверхность тела, либо через специализированные органы - жабры, легкие, трахеи. При этом покровы могут служить дополнительным органом дыхания. Если через покровы тела происходит газообмен, то они очень тонки. Дыхание облегчается также увеличением поверхности. Это достигается в ходе эволюции видов образованием различных выростов, уплощением, удлинением, общим уменьшением размеров тела. Некоторые виды при нехватке кислорода активно изменяют величину дыхательной поверхности. Многие сидячие и малоподвижные животные обновляют вокруг себя воду, либо создавая ее направленный ток, либо колебательными движениями способствуя ее перемешиванию.
У некоторых видов встречается комбинирование водного и воздушного дыхания. Вторичноводные животные сохраняют обычно атмосферное дыхание как более выгодный энергетически и нуждаются поэтому в контактах с воздушной средой.
Нехватка кислорода в воде приводит иногда к катастрофическим явлениям - заморам, сопровождающимся гибелью множества гидробионтов. Зимние заморы часто вызываются образованием на поверхности водоемов льда и прекращением контакта с воздухом; летние - повышением температуры воды и уменьшением вследствие этого растворимости кислорода. Заморы чаще возникают чаще возникают в прудах, озерах, реках. Реже заморы происходят в морях. Кроме недостатка кислорода, заморы могут быть вызваны повышением концентрации в воде токсичных газов - метана, сероводорода и других, образующихся в результате разложения органических материалов на дне водоемов.
2.3. Солевой режим.
Поддержание водного баланса гидробионтов имеет свою специфику. Если для наземных животных и растений наиболее важно обеспечение организма водой в условиях ее дефицита, то для гидробионтов не менее существенно поддержание определенного количества воды в теле при ее избытке в окружающей среде. Излишнее количество воды в клетках приводит к изменению в них осмотического давления и нарушению важнейших жизненных функций.
Большинство водных обитателей пойкилосмотичны: осмотическое давление в их теле зависит от солености окружающей воды. Поэтому для гидробионтов основной способ поддерживать свой солевой баланс - это избегать местообитаний с неподходящей соленостью. Пресноводные формы не могут существовать в морях, морские - не переносят опреснения. Если соленость воды подвержена изменениям, животные перемещаются в поисках благоприятной среды. Позвоночные животные, высшие раки, насекомые и их личинки, обитающие в воде, относятся к гомойосмотическим видам, сохраняя постоянное осмотическое давление в теле независимо от концентрации солей в воде.
У пресноводных видов соки тела гипертоничны по отношению к окружающей среде. Им угрожает излишнее обводнение, если не препятствовать поступлению или не удалять избыток воды из тела. У простейших это достигается работой выделительных вакуолей, у многоклеточных - удалением воды через выделительную систему. Некоторые инфузории каждые 2-2,5 минуты выделяют количество воды, равное объему тела. На «откачку» избыточной воды клетка затрачивает очень много энергии. С повышением солености работа вакуолей замедляется.
Если вода гипертонична по отношению к сокам тела гидробионтов, им грозит обезвоживание в результате осмотических потерь. Защита от обезвоживания достигается повышением концентрации солей также в теле гидробионтов. Обезвоживанию препятствуют непроницаемые для воды покровы гомойосматических организмов - млекопитающих, рыб, высших раков, водных насекомых и их личинок. Многие пойкилосмотические виды переходят к неактивному состоянию - анабиозу в результате дефицита воды в теле при возрастании солености. Это свойственно видам, обитающим в лужах морской воды и на литорали: коловраткам, жгутиковым, инфузориям, некоторым рачкам и др. Солевой анабиоз - средство переживать неблагоприятные периоды в условиях переменной солености воды.
Истинно эвригалинных видов, способных в активном состоянии обитать как в пресной, так и в соленой воде, среди водных обитателей не так уж много. В основном это виды, населяющие эстуарии рек, лиманы и другие солоноватоводные водоемы.
2.4. Температурный режим водоемов более устойчив, чем на суше.
Это связано с физическими свойствами воды, прежде всего высокой удельной теплоемкостью, благодаря которой получение или отдача значительного количества тепла не вызывает слишком резких изменений температуры. Амплитуда годовых колебаний температуры в верхних слоях океана не более 10-150С, в континентальных водоемах - 30-350С. Глубокие слои воды отличаются постоянством температуры. В экваториальных водах среднегодовая температура поверхностных слоев +26...+270С, в полярных - около 00С и ниже. Таким образом, в водоемах существует довольно значительное разнообразие температурных условий. Между верхними слоями воды с выраженными в них сезонными колебаниями температуры и нижними, где тепловой режим постоянен, существует зона температурного скачка, или термоклина. Термоклин резче выражен в теплых морях, где сильнее перепад температуры наружных и глубинных вод.
В связи с более устойчивым температурным режимом воды среди гидробионтов в значительно большей мере, чем среди населения суши, распространена стенотермность. Эвритермные виды встречаются в основном в мелких континентальных водоемах и на литорали морей высоких и умеренных широт, где значительны суточные и сезонные колебания температуры.
2.5. Световой режим водоемов.
Света в воде гораздо меньше, чем в воздухе. Часть падающих на поверхность водоема лучей отражается в воздушную среду. Отражение тем сильнее, чем ниже положение Солнца, поэтому день под водой короче, чем на суше. Быстрое убывание количества света с глубиной связано с поглощением его водой. Лучи с разной длиной волны поглощаются неодинаково: красные исчезают уже недалеко от поверхности, тогда как сине-зеленые проникают гораздо глубже. Сгущающиеся с глубиной сумерки имеют сначала зеленый, затем голубой, синий и сине-фиолетовый цвет, сменяясь наконец постоянным мраком. Соответственно сменяют друг друга с глубиной зеленые, бурые и красные водоросли, специализированные на улавливание света с разной длиной волны. Окраска животных меняется с глубиной так же закономерно. Наиболее ярко и разнообразно окрашены обитатели литоральной и сублиторальной зон. Многие глубинные организмы, подобно пещерным, не имеют пигментов. В сумеречной зоне широко распространена красная окраска, которая является дополнительной к сине-фиолетовому свету на этих глубинах. Дополнительные по цвету лучи наиболее полно поглощаются телом. Это позволяет животным скрываться от врагов, так как их красный цвет в сине-фиолетовых лучах зрительно воспринимается как черный.
Поглощение света тем сильнее, чем меньше прозрачность воды, которая зависит от количества взвешенных в ней частиц. Прозрачность характеризуют предельной глубиной, на которой еще виден специально опускаемый белый диск диаметром около 20 см (диск Секки). Самые прозрачные воды - в Саргассовом море: диск виден до глубины 66,5 м. В Тихом океане диск Секки виден до 59 м, в Индийском - до 50 м, в мелких морях - до 5-15 м. Прозрачность рек в среднем 1-1,5 м. Поэтому граница зоны фотосинтеза сильно варьирует в разных водоемах.
Количество света в верхних слоях водоемов сильно меняется в зависимости от широты местности и от времени года. Длинные полярные ночи сильно ограничивают время, пригодное для фотосинтеза, в арктических и приантарктических бассейнах, а ледовый покров затрудняет доступ света зимой во все замерзающие водоемы.
3. Специфические приспособления гидробионтов.
3.1. Способы ориентации животных в водной среде.
Жизнь в постоянных сумерках или во мраке сильно ограничивает возможности зрительной ориентации гидробионтов. В связи с быстрым затуханием световых лучей в воде даже обладатели хорошо развитых органов зрения ориентируются при их помощи лишь на близком расстоянии.
Звук распространяется в воде быстрее, чем в воздухе. Ориентация на звук развита у гидробионтов в целом лучше, чем зрительная. Ряд видов улавливает даже колебания очень низкой частоты (инфразвуки), возникающие при изменении ритма волн, и заблаговременно спускается перед штормом из поверхностных слоев в более глубокие. Многие обитатели водоемов - млекопитающие, рыбы, моллюски, ракообразные - сами издают звуки. Ракообразные осуществляют это трением друг о друга разных частей тела; рыбы - с помощью плавательного пузыря, глоточных зубов, челюстей, лучей грудных плавников и другими способами. Звуковая сигнализация служит чаще всего для внутривидовых взаимоотношений - например, для ориентации в стае, привлечения особей другого пола, и особенно развита у обитателей мутных вод и больших глубин, живущих в темноте.
Ряд гидробионтов отыскивает пище и ориентируется при помощи эхолокации - восприятия отраженных звуковых волн. Многие воспринимают отраженные электрические импульсы, производя при плавании разряды разной частоты. Известно около 300 видов рыб, способных генерировать электричество и использовать его для ориентации и сигнализации. Ряд рыб использует электрические поля также для защиты и нападения.
Для ориентации в глубине служит восприятие гидростатического давления. Оно осуществляется при помощи статоцистов, газовых камер и других органов.
Наиболее древний способ, свойственный всем водным животным, - восприятие химизма среды. Хеморецепторы многих гидробионтов обладают чрезвычайной чувствительностью. В тысячекилометровых миграциях, которые характерны для многих видов рыб, они ориентируются в основном по запахам, с поразительной точностью находя места нерестилищ или нагула.
3.2. Фильтрация как тип питания.
Некоторые гидробионты обладают особым характером питания - это отцеживание или осаждение взвешенных в воде частиц органического происхождения и многочисленных мелких организмов. Такой способ питания, не требующий больших затрат энергии на поиски добычи, характерен для пластинчатожабренных моллюсков, сидячих иглокожих, полихет, мшанок, асцидий, планктонных рачков и других. Животные - фильтраторы выполняют важнейшую роль в биологической очистке водоемов. Литоральная зона океана, особенно богатая скоплениями фильтрующих организмов, работает как эффективная очистительная система.
3.3. Специфика приспособлений к жизни в пересыхающих водоемах.
На Земле существует много временных, неглубоких водоемов, возникающие после разлива рек, сильных дождей, таяния снега и т.п. В этих водоемах, несмотря на краткость их существования, поселяются разнообразные гидробионты. Общими особенностями обитателей пересыхающих бассейнов являются способности давать за короткие сроки многочисленное потомство и переносить длительные периоды без воды. Представители многих видов при этом закапываются в ил, переходя в состояние пониженной жизнедеятельности - гипобиоза. Многие мелкие виды образуют цисты, выдерживающие засуху. Другие переживают неблагоприятный период в стадии высокоустойчивых яиц. Некоторым видам пересыхающих водоемов присуща уникальная способность высыхать до состояния пленки, а при увлажнении возобновлять рост и развитие.