Лекции по гидродинамике

Автор работы: Пользователь скрыл имя, 16 Марта 2012 в 07:30, лекция

Описание

Основные понятия гидродинамики. Уравнение Д. Бернулли. Виды гидравлических сопротивлений и потери напора.

Работа состоит из  1 файл

2.docx

— 911.73 Кб (Скачать документ)

                                                                                                        Лекции по  ГИДРОДИНАМИКЕ

 

2.1 Основные понятия гидродинамики

 

Основные элементы движения жидкости. Причинами движения жидкости являются действующие на нее силы: объемные или массовые силы (сила тяжести, инерционные силы) и поверхностные силы (давление, трение). В отличие от гидростатики, где основной величиной, характеризующей состояние покоя жидкости, является гидростатическое давление, которое определяется только положением точки в пространстве, т.е. , в гидродинамике основными элементами, характеризующими движение жидкости, будут два: гидродинамическое давление и скорость движения (течения) жидкости.

Гидродинамическое давление р – это внутреннее давление. развивающееся при движении жидкости. Скорость движения жидкости в данной точке и – это скорость перемещения находящейся в данной точке частицы жидкости, определяемая длиной пути l, пройденного этой частицей за единицу времени t.

В общем случае основные элементы движения жидкости р и и для данной точки зависят от ее положения в пространстве (координат точки) и могут изменяться во времени. Аналитически это положение гидродинамики записывается так:

,

.

Задачей гидродинамики и является определение основных элементов  движения жидкости р и u, установление взаимосвязи между ними и законов изменения их при различных случаях движения жидкости.

Траектория частицы.Если в массе движущейся жидкости взять какую-либо частицу жидкости и проследить ее путь за какой-то промежуток времени (конечный, достаточно большой), то можно получить некоторую линию, выражающую геометрическое место этой точки в пространстве за время .

рис. 12.

Линия тока. Если в массе движущейся жидкости в данный момент времени t взять какую-либо точку 1 (рис. 12), то можно в этой точке построить вектор скорости и1, выражающий величину и направление скорости движения частицы жидкости в данной точке 1 в этот момент времени.

В тот же момент времени t можно взять и другие точки в движущейся жидкости, например, точки 2, 3, 4,. ..... в которых также можно построить векторы скоростей u2, u3, и4,… выражающие скорость движения других частиц жидкости в тот же момент.

Можно выбрать  точки 1, 2, 3, 4. . . и провести через них плавную кривую, к которой векторы скоростей будут всюду касательны. Эта линия и называется линией тока.

Таким образом, линией тока называется линия, проведенная через ряд точек в движущейся жидкости так, что в данный момент времени векторы скорости частиц жидкости, находящихся в этих точках, направлены по касательной к этой линии. В отличие от траектории, которая показывает путь движения одной частицы жидкости за определенный промежуток времени , линия тока соединяет разные частицы и дает некоторую мгновенную характеристику движущейся жидкости в момент времени t. Через заданную точку в данный момент времени можно провести только одну линию тока.

Если в  данных точках движущейся жидкости величина и направление скорости и гидродинамическое давление с течением времени не изменяются (такое движение называется установившимся), то и линия тока, и траектория частицы, оказавшейся на ней, совпадают и со временем не изменяются. В этом случае траектории частиц являются и линиями тока.

Рис. 13

Элементарная струйка. Если в движущейся жидкости выделить весьма малую элементарную площадку , перпендикулярную направлению течения, и по контуру ее провести линии тока, то полученная поверхность называется трубкой тока, а совокупность линий тока, проходящих сплошь через площадку , образует так называемую элементарную струйку (рис. 13).

Элементарная  струйка характеризует состояние  движения жидкости в данный момент времени t. При установившемся движении элементарная струйка имеет следующие свойства:

1. форма  и положение элементарной  струйки с течением времени  остаются неизменными, так как не изменяются линии тока;

2. приток жидкости в элементарную  струйку и отток из нее через  боковую поверхность невозможен, так как по контуру элементарной струйки скорости направлены по касательной;

3. скорость и гидродинамическое  давление во всех точках поперечного  лечения элементарной струйки можно считать одинаковым ввиду малости площади .

Поток. Совокупность элементарных струек движущейся жидкости, проходящих   через   площадку   достаточно   больших   размеров, называется потоком жидкости. Поток ограничен твердыми поверхностями, по которым происходит движение жидкости (труба), и атмосферой (река, лоток, канал и т.п.).

 

 

 

 

55. Уравнение Д. Бернулли

 

Уравнение Даниила Бернулли является основным уравнением гидродинамики. Ниже разбирается это уравнение для установившегося плавно изменяющегося движения жидкости, с помощью которого решаются основные задачи гидродинамики. Введем понятия удельной энергии элементарной струйки и потока жидкости.

рис. 20.

Удельная энергия элементарной струйки. Напомним, что удельная энергия есть энергия, отнесенная к единице силы тяжести жидкости. Пусть имеем в элементарной струйке частицу массой m, которая обладает некоторой скоростью и, находится под гидродинамическим давлением р, занимает некоторый объем V и находится от произвольной плоскости сравнения о-о на некоторой высоте z (рис. 20). Масса частицы обладает запасом удельной потенциальной энергии еп, которая складывается из удельных потенциальных энергий положения епол, и давления едав. В самом деле, масса жидкости, поднятая на высоту z, имеет запас потенциальной энергии, равный mgz, где g – ускорение свободного падения. Удельная потенциальная энергия положения равна потенциальной  энергии,  деленной   на  силу  тяжести жидкости ( )

.   (а)

Масса   жидкости   занимает   некоторый   объем   V,   находящийся под давлением р. Потенциальная энергия давления равна рV. Удельная же потенциальная энергия давления равна потенциальной энергии pV, деленной на силу тяжести данного объема  gV, т.е.

.   (б)

Полный  запас удельной потенциальной энергии  массы жидкости равен их сумме, т. е. и, учитывая выражения (а) и (б), напишем

.   (в)

Кроме того, масса жидкости т движется со скоростью и и обладает кинетической энергией ; но сила тяжести этой массы равна mg, и удельная кинетическая энергия струйки равна

.  (г)

Складывая выражения (в) и (г), получим выражение полной удельной энергии элементарной струйки

.      (71)

Здесь – удельная кинетическая энергия;

 – удельная потенциальная  энергия давления и положения.

Полная удельная энергия  потока Е складывается из удельной потенциальной энергии и удельной кинетической энергии Ек потока.

Для случая установившегося плавно изменяющегося  движения жидкости удельная потенциальная энергия во всех точках живого сечения одинакова и равна

.     (д)

Поток жидкости рассматривается как совокупность п элементарных струек, каждая из которых обладает своей удельной кинетической энергией .   Эта   величина   различна   для   разных   струек,   образующих   поток.

Определим среднее значение этой величины в  сечении потока. Для этого действительные скорости элементарных струек u1, u2, ..., ип заменим средней скоростью потока v; тогда среднее значение удельной кинетической энергии потока в данном сечении равно

.   (е)

Здесь a – коэффициент Кориолиса, учитывающий неравномерность распределения скоростей по сечению потока (или корректив кинетической энергии).

Безразмерный  коэффициент a представляет собой отношение действительной кинетической энергии потока к кинетической энергии, вычисленной по средней скорости. Если эпюра скоростей в сечении потока близка к прямоугольной, т.е. скорости в разных точках близки к средней, то коэффициент Кориолиса a близок к единице. Если же скорости в сечении значительно различаются между собой, то и коэффициент a оказывается значительно больше единицы.

Рассмотрим, например, поток глубиной Н = 6 м, в сечении которого скорости распределены по треугольнику, т.е. у дна скорость равна нулю и к поверхности нарастает по закону прямой до наибольшего значения ипов = 3 м/сек. Средняя скорость v = 1,5 м/сек, а соответствующая ей кинетическая энергия

м.

Оценим кинетическую энергию потока точнее. Для этого  возьмем три точки на высоте h1 = 1м; h2 = 3 м и h3 = 5 м, которые лежат посредине слоев равной высоты по 2 м каждый. Скорость в этих точках соответственно и1 = 0,5; и2 = 1,5 и и3 = 2,5 м/сек. Вычислим кинетическую энергию по этим трем скоростям

м,

что больше, чем по средней  скорости.

Коэффициент Кориолиса получается

.

На основе обработки многочисленных данных, полученных на реках и каналах, установлено, что для больших открытых потоков  . При равномерном движении в трубах и каналах практически .

В дальнейшем, за исключением особо  оговоренных случаев, для упрощения расчетов будем принимать . Однако следует помнить, что в некоторых случаях при неравномерном распределении скоростей значения a могут быть значительно больше 1 (2 и более).

Рис.21.

Складывая удельную кинетическую и  удельную потенциальную энергии  потока, получим формулу полной удельной энергии потока

,

а учитывая выражения (е) и (д), имеем

,     (72) 
т.е. полная удельная энергия потока равна сумме удельной кинетической и удельной потенциальной (давления и положения) энергий потока. Напомним, что все выводы сделаны для установившегося, плавно изменяющегося движения жидкости.

Уравнение Д. Бернулли для элементарной струйки. Выделим в установившемся потоке реальной жидкости элементарную струйку (рис. 21) и определим удельную энергию жидкости в двух произвольных сечениях 1-1 и 2-2. Высоты положения центров первого и второго сечений будут соответственно z1 и z2; гидродинамическое давление и этих же точках р1 и р2 скорости течения – и1 и и2. Тогда полная удельная энергия элементарной струйки в сечении 1-1 на основании формулы (71) равна

,   (ж)

а в сечении 2-2

.   (з)

Практически всегда , так как часть полной энергии затрачивается на преодоление сил сопротивления (трения) при движении жидкости от сечения 1-1 к сечению 2-2. Обозначим эти потери . Тогда в соответствии с законом сохранения энергии можно написать, что , и, учитывая выражения (ж) и (з), получим

.    (73) 
Уравнение (73) и есть уравнение Д. Бернулли для элементарной струйки реальной жидкости при установившемся движении, которое устанавливает связь между скоростью движения, давлением в жидкости и положением точки в пространстве. Оно справедливо для любых двух сечений, так как сечения 1-1 и 2-2 были взяты произвольно. Уравнение (73) можно изобразить и графически (рис. 21). Если соединить уровни жидкости в пьезометрах, присоединенных к нескольким сечениям, получим некоторую линию р-р, которая называется пьезометрической линией и показывает изменение удельной потенциальной энергией по длине элементарной струйки. Если соединить точки, которые в каждом сечении вертикали изображают полную удельную энергию (а такие точки действительно можно получить, о чем см. ниже), получим некоторую линию N-N, которая называется напорной линией или линией энергии; она показывает изменение полной удельной энергии по длине струйки. Тогда расстояние по вертикали в любом сечении между горизонтальной плоскостью I-I, соответствующей начальному запасу удельной энергии в первом сечении, и напорной линией N-N дает величину потерь энергии hw на преодоление сил сопротивления на участке от первого сечения до данного сечения, а расстояние между напорной и пьезометрической линиями – удельную кинетическую энергию в данном сечении u2/2g.

Для идеальной жидкости, где отсутствуют  силы трения, в уравнении (IV.7) hw= 0 и уравнение Бернулли принимает вид

.    (73 / )

Но  так как сечения 1-1 и 2-2 взяты произвольно, то в общем виде уравнение Бернулли для элементарной струйки идеальной жидкости записывается так:

.     (73")

Уравнение Д. Бернулли для потока. Рассмотрим поток при установившемся, плавно изменяющемся движении (рис. 22). Выберем произвольно два сечения 1-1 и 2-2, по осям которых соответственно имеем z1 и z2 – вертикальные координаты оси потока над произвольной плоскостью сравнения о-о, р1 и p2 гидродинамические давления, в тех же точках v1 и v2 – средние скорости в сечениях 1-1 и 2-2.

Полную  удельную энергию потока определяем по формуле (72): сечение 1-1

,

Информация о работе Лекции по гидродинамике