Геология и петрография

Автор работы: Пользователь скрыл имя, 09 Марта 2012 в 16:03, контрольная работа

Описание

Геология (греч. "гео" - земля, "логос" - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности. Современная геология использует новейшие достижения и методы ряда естественных наук - математики, физики, химии, биологии, географии. Значительный прогресс в указанных областях наук и геоло

Работа состоит из  1 файл

геология.docx

— 355.46 Кб (Скачать документ)

 

ВВЕДЕНИЕ

Геология (греч. "гео" - земля, "логос" - учение) - одна из важнейших наук о Земле. Она занимается изучением состава, строения, истории развития Земли и процессов, протекающих в ее недрах и на поверхности. Современная геология использует новейшие достижения и методы ряда естественных наук - математики, физики, химии, биологии, географии. Значительный прогресс в указанных областях наук и геологии ознаменовался появлением и развитием важных пограничных наук о Земле - геофизики, геохимии, биогеохимии, кристаллохимии, палеогеографии, позволяющих получить данные о составе, состоянии и свойствах вещества глубоких частей земной коры и оболочек Земли, расположенных ниже. Особо следует отметить многостороннюю связь геологии с географией (ландшафтоведением, климатологией, гидрологией, гляциологией, океанографией) в познании различныхгеологических процессов, совершающихся на поверхности Земли. Взаимосвязь геологии и географии особенно проявляется в изучении рельефа земной поверхности и закономерностей его развития. Геология при изучении рельефа использует данные географии, так же как и география опирается на историю геологического развития и взаимодействия различных геологических процессов. Вследствие этого наука о рельефе - геоморфология фактически является также пограничной наукой.

По геофизическим данным в строении Земли выделяется несколько  оболочек: земная кора, мантия и ядро Земли.Предметом непосредственного изучения геологии являются земная кора и подстилающий твердый слой верхней мантии - литосфера (греч. "литос" - камень). Сложность изучаемого объекта вызвала значительную дифференциацию геологических наук, комплекс которых совместно с пограничными науками (геофизикой, геохимией и др.) позволяет получить освещение различных сторон его строения, сущность совершающихся процессов, историю развития и др.

Одним из нескольких основных направлений в геологии является изучение вещественного состава  литосферы: горных пород, минералов, химических элементов. Одни горные породы образуются из магматического силикатного расплава и называются магматическими или изверженными, другие - путем осаждения и накопления в морских и континентальных условиях и называются осадочными;третьи - за счет изменения различных горных пород под влиянием температуры и давления, жидких и газовых флюидов и называются метаморфическими.

Изучением вещественного  состава литосферы занимается комплекс геологических наук, объединяющихся часто под названием геохимического цикла. К ним относятся: петрография (греч. "петрос" - камень, скала, "графо" - пишу, описываю), или петрология -наука, изучающая магматические и метаморфические горные породы, их состав, структуру, условия образования, степень изменения под влиянием различных факторов и закономерность распределения в земной коре. Литология (греч. "литос" - камень) - наука, изучающая осадочные горные породы. Минералогия -наука, изучающая минералы - природные химические соединения или отдельные химические элементы, слагающие горные породы. Кристаллография и кристаллохимия занимаются изучением кристаллов и кристаллического состояния минералов. Геохимия - обобщающая синтезирующая наука о вещественном составе литосферы, опирающаяся на достижения указанных выше наук и изучающая историю химических элементов, законы их распределения и миграции в недрах Земли и на ее поверхности. С рождением изотопной геохимии в геологии открылась новая страница в восстановлении истории геологического развития Земли.

Изучение вещественного  состава литосферы, как и других процессов, производится различными методами. В первую очередь это прямые геологические  методы - непосредственное изучение горных пород в естественных обнажениях на берегах рек, озер, морей, разрезов шахт, рудников, кернов буровых скважин. Все это ограничено относительно небольшими глубинами. Наиболее глубокая, пока единственная в мире, Кольская скважина достигла всего лишь 12,5 км. Но более глубокие горизонты земной коры и прилежащей части верхней  мантии также доступны непосредственному  изучению. Этому способствуют извержения вулканов, доносящие до нас обломки  пород верхней мантии, заключенные  в излившейся магме - лавовых потоках. Такая же картина наблюдается  в алмазоносных трубках взрыва, глубина возникновения которых соответствует 150-200 км. Помимо указанных прямых методов в изучении веществ литосферы широко применяются оптические методы и другие, физические и химические исследования - рентгеноструктурные, спектрографические и др. При этом широко используются математические методы на основе ЭВМ для оценки достоверности химических и спектральных анализов, построения рациональных классификаций горных пород и минералов и др. В последние десятилетия применяются, в том числе и с помощью ЭВМ, экспериментальные методы, позволяющие моделировать геологические процессы; искусственно получать различные минералы, горные породы; воссоздавать огромные давления и температуры и непосредственно наблюдать за поведением вещества в этих условиях; прогнозировать движение литосферных плит и даже, в какой-то степени, представить облик поверхности нашей планеты в будущие миллионы лет.

Следующим направлением геологической  науки является динамическая геология,изучающая разнообразные геологические процессы, формы рельефа земной поверхности, взаимоотношения различных по генезису горных пород, характер их залегания и деформации. Известно, что в ходе геологического развития происходили многократные изменения состава, состояния вещества, облика поверхности Земли и строения земной коры. Эти преобразования связаны с различными геологическими процессами и их взаимодействием. Среди них выделяются две группы: 1) эндогенные (греч. "эндос" - внутри), или внутренние,связанные с тепловым воздействием Земли, напряжениями, возникающими в ее недрах, с гравитационной энергией и ее неравномерным распределением; 2) экзогенные (греч. "экзос" - снаружи, внешний), или внешние,вызывающие существенные изменения в поверхностной и приповерхностной частях земной коры. Эти изменения связаны с лучистой энергией Солнца, силой тяжести, непрерывным перемещением водных и воздушных масс, циркуляцией воды на поверхности и внутри земной коры, с жизнедеятельностью организмов и другими факторами. Все экзогенные процессы тесно связаны с эндогенными, что отражает сложность и единство сил, действующих внутри Земли и на ее поверхности.

В область динамической геологии входит геотектоника (греч. "тектос" - строитель, структура, строение) - наука, изучающая структуру земной коры и литосферы и их эволюцию во времени и пространстве. Частные ветви геотектоники составляют: структурная геология, занимающаяся формами залегания горных пород; тектонофизика, изучающая физические основы деформации горных пород; региональная геотектоника, предметом изучения которой служит структура и ее развитие в пределах отдельных крупных регионов земной коры. Важными разделами динамической геологии являются сейсмология (греч. "сейсмос" - сотрясение) - наука о землетрясениях ивулканология,занимающаяся современными вулканическими процессами.

История геологического развития земной коры и Земли в целом  является предметом изучения исторической геологии, в состав которой входит стратиграфия (греч. "стратум" - слой), занимающаяся последовательностью формирования толщ горных пород и расчленением их на различные подразделения, а также палеогеография (греч. "паляйос" - древний), изучающая физико-географические обстановки на поверхности Земли в геологическом прошлом, и палеотектоника, реконструирующая древние структурные элементы земной коры. Расчленение толщ горных пород и установление относительного геологического возраста слоев невозможны без изучения ископаемых органических остатков, которым занимается палеонтология,тесно связанная как с биологией, так и с геологией. Следует подчеркнуть, что важной геологической задачей является изучение геологического строения и развития определенных участков земной коры, именуемых регионами и обладающих какими-то общими чертами структуры и эволюции. Этим занимается обычно региональная геология,которая практически использует все перечисленные ветви геологической науки, а последние, взаимодействуя между собой, дополняют друг друга, что демонстрирует их тесную связь и неразрывность. При региональных исследованиях широко используютсядистанционные методы, когда наблюдения осуществляются с вертолетов, самолетов и с искусственных спутников Земли.

Косвенные методы познания, в основном глубинного строения земной коры и Земли в целом, широко используются геофизикой - наукой, основанной на физических методах исследования. Благодаря различным физическим полям, применяемым в подобных исследованиях, выделяются магнитометрические, гравиметрические, электрометрические, сейсмометрические и ряд других методов изучения геологической структуры. Геофизика тесно связана с физикой, математикой и геологией.

Одна из важнейших задач  геологии - прогнозирование залежей  минерального сырья, составляющего  основу экономической мощи государства. Этим занимается наука о месторождениях полезных ископаемых,в сферу которой входят как рудные и нерудные ископаемые, так и горючие - нефть, газ, уголь, горючие сланцы. Не менее важным полезным ископаемым в наши дни является вода, особенно подземная, происхождением, условиями залегания, составом и закономерностями движений которой занимается наука гидрогеология (греч. "гидер" - вода), связанная как с химией, так и с физикой и, конечно, с геологией.

Важное значение имеет инженерная геология -наука, исследующая земную кору в качестве среды жизни и разнообразной деятельности человека. Возникнув, как прикладная ветвь геологии, занимающаяся изучением геологических условий строительства инженерных сооружений, эта наука в наши дни решает важные проблемы, связанные с воздействием человека на литосферу и окружающую среду. Инженерная геология взаимодействует с физикой, химией, математикой и механикой, с одной стороны, и с различными дисциплинами геологии - с другой, с горным делом и строительством - с третьей. За последнее время оформилась как самостоятельная наукагеокриология (греч. "криос - холод, лед), изучающая процессы в областях развития многолетнемерзлых горных пород "вечной мерзлоты", занимающих почти 50% территории СССР. Геокриология тесно связана с инженерной геологией.

С начала освоения космического пространства возникла космическая геология,или геология планет.Освоение океанских и морских глубин привело к появлению морской геологии,значение которой быстро возрастает в связи с тем, что уже сейчас почти треть добываемой в мире нефти приходится на дно акваторий морей и океанов.

Разработка теоретических  проблем геологии сочетается с решением ряда народнохозяйственных задач: 1) поиск  и открытия новых месторождений  различных полезных ископаемых, являющихся основной базой промышленности и  сельского хозяйства; 2) изучение и  определение ресурсов подземных  вод, необходимых для питьевого  и промышленного водоснабжения, а также мелиорации земель; 3) инженерно-геологическое  обоснование проектов возводимых крупных  сооружений и научный прогноз  изменения условий после окончания  их строительства; 4) охрана и рациональное использование недр Земли.

Познание всех закономерностей  эволюции Земли, ее происхождения и  развития исключительно важно в  контексте общего материалистического  понимания природы, в тех философских  построениях, которые отражают единство мира. В этом заключается общенаучное  значение геологии.

Основные данные о Земле и земной коре


Земля, имея форму геоида - эквипотенциальной поверхности, сила тяжести к которой повсеместно  направлена перпендикулярно, обладает неоднородностью физических свойств  и дифференцированностью состава сферических оболочек: земной коры, мантии, внешнего и внутреннего ядра. Земная кора и верхняя часть верхней мантии, образующие твердую литосферу, подстилаются пластичной астеносферой, играющей важную роль в глубинных геологических процессах. Химический состав Земли близок к среднему химическому составу метеоритов, а состав сферических оболочек резко неоднороден и изменяется с глубиной.

Глава 1. Форма, размеры  и строение Земли

1.1 ФОРМА И РАЗМЕРЫ  ЗЕМЛИ

Земля одна из девяти планет, вращающихся вокруг Солнца. Первые представления о формах и размерах Земли появились еще в глубокой древности. Античные мыслители (Пифагор - V в. до н.э., Аристотель - III в. до н.э. и др.) высказывали мысль, что наша планета имеет шарообразную форму.

Рис. 1.1. Эллипсоид вращения





Геодезические и астрономические  исследования последующих столетий дали возможность судить о действительной форме Земли и ее размерах. Известно, что формирование Земли происходило  под действием двух сил - силы взаимного  притяжения частиц ее массы и центробежной силы, обусловленной вращением планеты  вокруг своей оси. Равнодействующей обеих названных сил является сила тяжести, выражаемая в ускорении, которое приобретает каждое тело, находящееся у поверхности Земли. На рубеже XVII и XVIII вв. впервые Ньютон теоретически обосновал положение о том, что под воздействием силы тяжести Земля должна иметь сжатие в направлении оси вращения и, следовательно, ее форма представляет эллипсоид вращения, илисфероид. Степень сжатия зависит от угловой скорости вращения. Чем быстрее вращается тело, тем больше оно сплющивается у полюсов. На рис. 1.1, изображающем эллипсоид вращения, выражена большая экваториальная ось (ЗОВ) и малая полярная ось (СОЮ).

Величины а = ЗОВ/2 и в = СОЮ/2 соответствуют полуосям эллипсоида. Сжатие эллипсоида будет выражено (а - в)/а. Разница полярного и экваториального радиусов составляет 21 км. Детальными последующими измерениями, особенно новыми методами исследования с искусственных спутников, было показано, что Земля сжата не только на полюсах, но также несколько и по экватору (наибольший и наименьший радиусы по экватору отличаются на 210 м), т.е. Земля является не двухосным, а трехосным эллипсоидом. Кроме того, расчетами Т. Д. Жонгловича и С. И. Тропининой показана несимметричность Земли по отношению к экватору: южный полюс расположен ближе к экватору, чем северный. 
В связи с расчленением рельефа (наличием высоких гор и глубоких впадин) действительная форма Земли является более сложной, чем трехосный эллипсоид. Наиболее высокая точка на Земле - гора Джомолунгма в Гималаях - достигает высоты 8848м. Наибольшая глубина 11 034 м обнаружена в Марианской впадине. Таким образом, наибольшая амплитуда рельефа земной поверхности составляет немногим менее 20 км. Учитывая эти особенности, немецкий физик Листинг в 1873 г. фигуру Земли назвал геоидом, что дословно обозначает "землеподобный".

Рис. 1.2. Поверхности рельефа, сфероида и геоида

Информация о работе Геология и петрография