Автор работы: Пользователь скрыл имя, 24 Апреля 2011 в 12:10, реферат
По сравнению с размерами земного шара, земная кора составляет 1/200 его радиуса. Но эта «пленка» – самое сложное по строению и до сих пор наиболее загадочное образование нашей планеты. Главнейшая особенность коры в том, что она служит пограничным слоем между земным шаром и окружающим нас космическим пространством.
Введение
Кора земли, формирование рельефа, основные положения тектоники
Заключение
Список литературы
Таким
образом, уже в самом начале развития
Земли как планеты существовали
условия для возникновения
Безусловно, поступающий из мантии вулканический материал является важнейшей составной частью вещества земной коры, однако несомненно и то, что первоначальная земная кора возникла за счет раздробления и гидратации ультраосновных пород, слагавших астероиды и метеориты. Эта кора, конечно, была более основной и не сильно отличалась от состава мантии.6 Период образования Земли как планеты, длившийся, по расчетам В.С. Сафронова, приблизительно 100 млн. лет, можно рассматривать как первую стадию эволюции нашей планеты.
Рудный бассейн Садбери имеет овальную форму размером 60х27 км. Он располагается на поверхности Канадского кристаллического щита, сложенного гранитами и кварцитами. Строение бассейна напоминает слоеный пирог: внизу залегают рудоносные породы – микропегматиты, диориты и другие, над ними – туф «опанинг», перекрытый слоями шиферных сланцев и песчаников. Была высказана гипотеза о том, что бассейн Садбери появился в результате падения 1700 млн. лет назад (возраст определен методами абсолютной геохронологии) гигантского метеорита. К этой гипотезе привели попытки расшифровать происхождение туфа «опанинг». По строению он представляет собой брекчию – раздробленную и вновь сцементированную породу – Обломки брекчии состоят из окружающих Садбери коренных гранитов. В брекчии со держится много стекла – расплавленных и быстро остыв птах, не успевших раскристаллизоваться минералов. По этим признакам «опанинг» очень напоминает мате риал из известных метеоритных кратеров. Сходство это недавно было подтверждено находкой в Садбери кристаллов кварца, обладающих своеобразной ориентировкой трещин, которые возникают в кварце только под воздействием ударных волн, создающих чрезвычайно высокие давления при ядерных взрывах или при падении гигантски метеоритов. Очевидно, удар гигантского метеорита вызвал и появление глубинных расплавленных масс, содержащих большое количество металлов.
Есть у нас прямые доказательства того, что падение даже относительно небольших метеоритов способно вызвать плавление пород на дне метеоритного кратера. Недавно советским геологом В.Л. Масайтисом была подробно изучена так называемая Попигайская котловина – округлая депрессия диаметром 100 км, расположенная на севере Сибири, в бассейне реки Хатанги. Катастрофа произошла примерно 30 млн. лет назад. Выброшенные во время взрыва крупные глыбы кристаллических пород фундамента Сибирской платформы разлетелись на расстояние до 40 км от края кратера. Удар метеорита вызвал плавление горных пород, в результате чего возникла необычная расплавленная лава с высоким содержанием кремнезема (65%), близкая но химическому составу к породам фундамента платформы и резко отличающаяся по химизму от глубинных трапповых излияний. Таким образом, если не все, то многие из названных механизмов плавления материала коры вследствие падения космических теп действительно существуют. Земную кору второй стадии эволюции Земли можно представить в виде относительно толстого слоя 20–50 км обводненных (серпентинизированных), в той или иной степени раздробленных ультраосновных пород. Местами встречались округлые массивы разных размеров переплавленных основных и ультраосновных пород и лавовые покровы на дне метеоритных кратеров.
Следующая стадия эволюции коры начиналась во второй половине архея (3–2,5 мдрд. пет назад). С этого периода тектоносфера Земли приобрела необходимую хрупкость. Отдельные зоны земной коры в местах максимальных напряжений стали рассекаться глубинными разломами, вдоль которых формировались геосинклинальные пояса и осуществлялся обмен веществом между корой и мантией Земли. Пространства же между такими; поясами разломов были относительно стабильны. В их пределах существовал платформенный режим. Важнейшей особенностью этой стадии развития коры является то, что с течением времени возникали новые системы разломов, а старые постепенно залечивались. В результате в red логической истории нашей планеты наметилось несколько эпох образования новых – геосинклинальных поясов, когда участки с платформенным типом развития сменялись геосинклинальным и наоборот.
Зоны глубинных разломов служили каналами, по которым происходил обмен веществом между корой и мантией Земли. Из мантии вследствие происходящего там плавления на поверхность Земли поступали значительные порции вулканических продуктов, преимущественно в виде базальтовых лав. Но в тех же приразломных зонах осуществлялся и обратный процесс – поглощение осадков из более глубоких горизонтов коры в мантию Земли. Помимо глубинных разломов необходимым условием обмена вещества между корой и мантией Земли является существование в мантии астеносферного слоя, где материал мантии находится в частично расплавленном состоянии и течет в горизонтальном направлении. Но возникновение астеносферного слоя в недрах сформировавшейся Земли возможно лишь тогда, когда ее термическая эволюция уже прошла определенный этап, первичные термальные неоднородности сгладились, а разогревание недр в результате радиоактивного распада достигло состояния, напоминающего современное.
Важнейшей особенностью третьей стадии эволюции земной коры, когда уже происходил обмен веществом между корой и мантией, является постоянное обогащение коры кремнеземом, калием и натрием. Задерживались в коре и радиоактивные элементы, что способствовало плавлению пород и формированию крупных гранитных тел.
Третья стадия развития Земли до некоторой степени продолжается и сейчас, что подтверждается различными типами тектонических движений на континентах. Однако, по-видимому, с начала палеозойской эры, т.е. примерно 0.5 млрд. лет назад, Земля вступила в четвертую свою стадию эволюции, которую мы с полным правом можем именовать океанической. Важнейшей особенностью этой стадии жизни нашей планеты является уничтожение мощной континентальной коры и превращение ее в тонкую океаническую, где, если не считать слоя воды, до границы М всего лишь 5–7 км.
Рассмотрим последовательность событий при формировании тонкой океанической коры, согласно нашей гипотезе океанообразования.
Во впадинах
средиземноморского типа и окраинных
морях в настоящее время
Если исходить из предполагаемого вещественного става земной коры платформ (граниты, гранодиориты – 5 км; габброиды и основные гранулиты – 7 км; серпенти-низированный гипербазит – 30 км), то в результате частичного плавления и выноса вверх воды, щелочей, кремнезема можно представить состав океанической коры: вода и щелочи (соли) – 4 км; кремнезем 2–4 км; анортозит – 5 км.7
Связанная
в серпентинитах вода в процессе
разогрева и частичного плавления
континентальной коры поднимается
на земную поверхность и вместе с
избытком щелочей и кальция дает
океанскую зону. Ниже будет находиться
слой почти чистого кремнезема, вынесенный
на поверхность термальными
Третий слой океанической коры может быть сложен и кислыми породами (гранитами), поскольку скорости сейсмических волн в этом слое много ниже, чем в «базальтовом» континентальной воры.
Лежащие под анортозитами мантийные породы океанов образовались частично за счет обезвоживания серпентинитов, частично за счет «зонной плавки», вынесшей вверх избытки щелочей, кремнезема, кальция и алюминия.
При таком перераспределении вещества сохраняются общий баланс элементов, участвующих в процессе океанизации, их суммарный вес и занимаемый ими объем. Нет необходимости прятать какие-либо элементы в мантию или, наоборот, черпать их из нее. Решается проблема воды. Получает объяснение равенство тепловых потоков на древних платформах и в океанах, поскольку количество радиоактивных элементов до и после океанизации не изменяется. Предлагаемый механизм океанизации физически возможен. Необходимое для его течения тепло, как показывают расчеты, в мантий имеется. Иные модели океанизации представляются нереальными.
Обращу внимание, что гипотеза плитовой тектоники также не решает проблемы баланса вещества, как и предложенные ранее гипотезы океанизации (В.В. Белоусов и др.). С позиций гипотезы плит, океаны возникли недавно (в мезозое, кайнозое) и очень быстро (50–100 млн. лет). Непонятно, откуда взялась вода, заполнившая океаны. Не соблюдается условие постоянства вещества океанической и континентальной тектоносферы.
Преобразование континентальной коры в тонкую океаническую возможно, по нашему мнению, лишь в том случае, если первая в значительной степени сложена серпентинизированными гинербазитами. Если же мощность «гранитного» слоя коры превышает 15–20 км, то образуется целый ряд промежуточных типов коры. Они широко известны во всех океанах под архипелагами островов. Мощность коры там меняется в пределах 12–25 км.
Такова утолщенная кора под Гавайскими, Каропинскими, Соломоновыми, Фиджи и другими островами Тихого океана. До 50% площади Индийского, Атлантического и Северного Ледовитого океанов, вместе взятых, занимает кора толщиной 10–20 и даже 30–40 км (Северная Атлантика).
Выше подчеркивалось, что этап океанообразования был непродолжительным (первые десятки миллионов лет). Не исключено, а скорее даже вероятно, что в жизни нашей планеты было несколько этапов океанизации, по-видимому, совпадающих с серединой геотектонического цикла. Возможно, что начало образования некоторых океанов, в особенности Тихого, относится к середине или даже к началу палеозойской эры. Многократная океанизация объясняет относительно небольшие колебания солевого состава Мирового океана. Типичная (5–7 км) океаническая кора, вероятно, сформировалась в результате нескольких (двух и более) эпох океанизации.8
Северная
Атлантика может служить
Положение зон начальной стадии океанизации в Северной Атлантике позволяет представить пространственную схему этого процесса в следующем виде. По-видимому, океанизация начинается вдоль некоторых зон глубинных разломов, по которым необходимое тепло поступает из мантии в кору быстрее, чем в других местах. Вдоль этих разломов возникают зоны начальной стадии океанизации (Баффинов залив, Датский пролив, Фареро-Шетландский «канал»).
В первую очередь десерпентинизируется (обезвоживается) нижний «базальтовый» слой. В результате нижние части континентальной коры оказываются под глубоководными заливами, как бы съеденными. Выделившаяся при этом вода заполняет образующуюся на поверхности Земли впадину. Если океанизация вступает в следующую стадию, то начинается зонное плавление верхней половины континентальной коры. Отдельные океанизирующиеся полосы расширяются и, сливаясь друг с другом, образуют типичный океан.
Характерный контур Атлантического океана в виде буквы S объясняется, на наш взгляд, тем, что процесс его образования шел по разломам, издревле имевшим такую ориентировку. Срединно-океанический хребет приурочен к одному из таких разломов, но формирование этой протяженной структуры непосредственно не связано с океанизацией, а представляет возникшую уже на океанической коре полосу поднятия, близкую по природе рифтам континентов.
В зонах глубинных разломов, возникавших в континентальной коре, степень серпентинизации гипербазитов резко возрастала и образовалось значительное количество высокомагнитного магнетита. При океанизации континентальной коры глубинные магнитные аномалии материковой коры могли сохраниться, создав полосовые магнитные аномалии, широко известные в океанах.
Геофизики, изучавшие природу магнитных аномалий в океанах, пришли к выводу, что нижние кромки магнитовозмущающих масс в большинстве случаев расположены ниже подошвы океанической – коры, т.е. в верхней мантии. Такой вывод не согласуется с гипотезой разрастания океанического дна, согласно которой магнитные аномалии генерированы вторым слоем океанической коры.9
Информация о работе Кора земли, формирование рельефа, основные положения тектоники