Метод бокового каротажа

Автор работы: Пользователь скрыл имя, 07 Декабря 2011 в 17:45, курсовая работа

Описание

Основным этапом разведки месторождений большинства полезных ископаемых является бурение скважины. Операция бурения неотъемлемо связана с изучением геологического разреза скважины. Одним из способов такого изучения является отбор керна. Но так как эта процедура требует как больших материальных так и временных затрат, применяют её более дешёвый аналог - каротаж. Каротаж заключается в измерении вдоль ствола скважины при помощи специальной установки или другим способом какой-либо физической или химической величины. Данные каротажа менее достоверны, чем отбор керна, но, тем не менее, этот способ изучения скважины имеет широкое применение.

Содержание

Введение……………………………………………………..3
Основы метода………………………………………………4
Семиэлектродный зонд…………………………….4
Псевдобоковой каротаж……………………………7
Трехэлектродный зонд…………………………….7
БК-8…………………………………………………9
Двойной боковой каротаж………………………...10
Прибор БК со сферической фокусировкой………10
Микробоковой каротаж…………………………....11
Псевдогеометрические факторы..............................11
Принципиальная схема аппаратуры бокового каротажа…13
Основы интерпретации……………………………………..16
Семиэлектродный каротаж………………………...16
Трехэлектродный каротаж…………………………20
Выбор зонда………………………………………...21
Определение удельного сопротивления………….22
Заключение………………………………………………….23
Список литературы…………………………………………24

Работа состоит из  1 файл

БК.doc

— 391.64 Кб (Скачать документ)

    г) медленный подъём кривой до максимума против середины пласта; если пласт мощный, против средней части пласта образуется участок, на котором кривая идёт параллельно оси глубин.

    При различном удельном сопротивлении вмещающих пород симметрия нарушается - максимум кривой смещается в сторону вмещающей породы с более высоким сопротивлением.

    Можно рекомендовать следующий способ отбивки границ пласта:

    а) отмечают на кривой сопротивления точки, где кривая имеет наибольшую кривизну; эти точки соответствуют кажущемуся удельному сопротивлению, приблизительно равному полусумме показаний против середины пласта и против вмещающих пород;

    б) от определённой таким образом ниже точки откладывают вниз расстояние соответствующее полудлине зонда (A0O1) и отмечают подошву пласта;

    в) от аналогичной верхней точки кривой сопротивлений откладывают такое же расстояние вверх и отмечают кровлю пласта.

    При мощности пласта, значительно большей размера зонда (A1A2<0,4 H), влияние ограниченной мощности пласта не сказывается, максимальное значение сопротивления близко к значению кажущегося удельного сопротивления для пласта неограниченной мощности. В дальнейшем по мере увеличения длины зонда по сравнению  с мощностью пласта максимальное сопротивление против пласта:

    а) занижено по сравнению с кажущимся удельным сопротивлением для пласта неограниченной мощности; наибольшее снижение наблюдается при зондах, размер которых близок к мощности пласта (L0»H);

    б) начиная приблизительно с L0 > 1,6 H завышено относительно сопротивления против пласта неограниченной мощности; наибольшее завышение наблюдается при  L»H;

    в) при L >> H опять наблюдается занижение максимального сопротивления по сравнению с сопротивлением пласта неограниченной мощности, тем больше чем больше L по сравнению с H.

    Аналогичная картина наблюдается, если мощность пласта остаётся постоянной. А увеличивается длина зонда.

    Влияние ограниченной мощности пласта (снижение rмакс при H»L0 и увеличение при H »L) в основном определяется отношением удельного бурового раствора rр; оно тем, больше чем меньше rвм/rр >10 максимальное сопротивление пласта максимальной мощности.

    При различном удельном сопротивлении подстилающих rн и покрывающих rв пород влияние ограниченной мощности пласта определяется удельным сопротивлением менее проводящей породы (rв или rн). 

Трёхэлектродный боковой каротаж.

    Электрическое поле трёхэлектродного зонда представляет собой поле длинного цилиндрического (вытянутого элипсоида вращения) заземления. Расчёт его также сложен. В связи с этим кажущееся удельное сопротивление для обоих типов зондов бокового каротажа получаю обычно на сеточной модели.

    Кажущееся удельное сопротивление для трёхэлектродного зонда определяется выражением для двухслойной среды

    

    при наличие зоны проникновения

    

    где 2a-диаметр центрального электрода; 2с-общий размер зонда; 2а1 = dс - диаметр скважины; 2a2 = D - диаметр зоны проникновения;

    c2=a2+k2; c12=a1+k2; c22=a2+k2.

    Указанные формулы получены заменой фактического цилиндрического зонда удлинённым сфероидом и в предположении, что поверхность скважины и внешняя граница зоны проникновения представлены эквипотенциальными поверхностями.

    Сравнение трёхэлектродного и семиэлетродного зонда бокового каротажа дает следующее.

    Для получения одинаковой вертикальной разрешающей способности расстояние O1O2 между серединами интервалов, отделяющих основной электрод трёхэлетродного зонда от дополнительных, должно быть равно расстоянию O1O2 между средними точками интервалов M1N1 и M2N2 семиэлектронного зонда.

    При одинаковом радиусе исследования общая длина трёхэлетродного зонда должна быть равной 1,5 A1A2 семиэлектродного.

    Преимущества семиэлектродного зонда бокового каротажа заключаются в возможности более лёгкого комплексирования его с исследованиями других видов и в меньшем влиянии скважины на результаты измерений.

    Рассмотрим некоторые вопросы интерпретации данных семиэлектродного бокового каротажа.

Выбор зонда.

    Для получения наиболее благоприятных результатов (rк ближе всего к rп) при двухслойной среде необходимо, чтобы коэффициент фокусировки зонда был около 1,5 размера зонда L0 - ,более 5dc. Для уменьшения влияние проникновения раствора коэффициент фокусировки зонда следует увеличить до 2,% -3, а размер зонда взять не менее 10dс. Чтобы иметь возможность отбивать пласты малой мощности, надо иметь зонд небольшого размера и, самое главное, небольшой длины. Последнее означает необходимость уменьшения размера зонда (A1A2) и увеличения q.

    Исходя из изложенного выше, для бокового каротажа, предназначенного для определения удельного сопротивления пластов, можно рекомендовать зонд с A1A2 » 10d и q= 2,5, например, A1A2 =2,5 м и O1O2 = 0,714 м. Расстояние M1N1 может быть взято равным 0,15-0,2 м.

    Зонд бокового каротажа общества Шлюмберже имеет O1O2 =32І (80см); A1A2 =80І (203см); модуль фокусировки O1O2/A1A2 = 2,5.

    Для изучения зоны проникновения общество Шлюмберже применяет малый зонд бокового каротажа:

    O1O2=12І (30 см), A1A2=56І (142см).

Определение удельного сопротивления.

    При оценке удельного сопротивления по данным бокового каротажа можно исходить из следующего.

    При пресных буровых растворах боковой каротаж сравнительно точно даёт значение сопротивления нефтеносных и газоносных пластов.

    Для точного определения удельного сопротивления по результатам измерения зондом бокового каротажа необходимо пользоваться расчётными кривыми зависимостями rк от параметров среды. Дана палетка для трёхслойной среды для определения удельного сопротивления пласта по результатам измерений зондом бокового каротажа с A1A2 - 2,5 м и q=2,5 для rзп/rр= 20 и диаметра скважины 9 3/4І. При ограниченной мощности пласта необходимо вводить поправку на мощность пластов.

    В общем случае удельное сопротивление пласта по данным одного зонда бокового каротажа определить затруднительно; следует провести измерения ещё одним или несколькими зондами.

    При повышающем проникновении для уточнения удельного сопротивления пласта рекомендуется пользоваться показаниями грдиент-зонда AO = 4,25 м. При понижающем проникновении в комплекс зондов малого размера, с индукционным каротажем и др.

    Рекомендуемая область применения бокового каротажа. Боковой каротаж следует применять в случае, если удельное сопротивление бурового раствора мало (менее 0,5 Ом м) или содержится большое число пластов малопористых пород (с удельным сопротивлением порядка нескольких сотен Ом м). К таким разрезам относятся разрезы, в которых преобладают карбонатные породы.

    ЗАКЛЮЧЕНИЕ

    Из этих данных можно заключить, что этот метод имеет широкое применения для решения задач исследования разреза скважины. Хотя существуют различные модификации метода, для решения конкретных задач, но общей особенностью всех модификация является применение фокусирующих электродов, что позволяет значительно  сузить толщину токовых линий и направить их непосредственно в изучаемый пласт. Так же с помощью некоторых модификаций можно наоборот уменьшить зону исследования зонда или придать токовым линиям определённую форму.

    Боковой каротаж целесообразно применять при бурении на сильноминерализованных растворах, так как хорошо проводящий раствор оказывает значительно меньшее влияние на показания бокового каротажа, чем на результаты измерения установками других типов. При проникновении в пласт раствора большой минерализации велика вероятность понижающего проникновения, которое мало сказывается на кривых бокового каротажа. Также хорошие результаты получаются при применении бокового каротажа в разрезах, представленных малопористыми породами, для которых наблюдается большее отношение удельного сопротивления пород к удельному сопротивлению бурового раствора. В этом случае боковой каротаж обеспечивает хорошее расчленение разреза. Метод мало эффективен при изучении пластов с повышающим проникновением.

    Большое применение получило комплексирование метода бокового каротажа, как с другими модификациями этого метода  так и с другими методами геофизического исследования скважин, такими как индукционный каротаж.  
 

Список литературы

    Комаров С.Г. Геофизические методы исследования скважин. Изд. второе. М., «Недра» 1973

    Горбачев Ю.И. Геофизические исследования скважин. М., «Недра» 1990

    Справочник Геофизика М., Гостоптехиздат, 1961. 
 
 
 
 
 
 
 

Информация о работе Метод бокового каротажа