Автор работы: Пользователь скрыл имя, 11 Апреля 2013 в 22:50, реферат
Один из основных материалов марганца — пиролюзит — был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» (от немецкого Manganerz — марганцевая руда).
Российский университет
дружбы народов
Инженерный факультет
Кафедра нефтепромысловой геологии, горного
и нефтегазового дела
Доклад по дисциплине «Экспресс-методы контроля качества руд и горных пород»
Тема: «Общая характеристика
марганцевых руд»
Студент: Городнюк Н.Ю., гр. ИБМ-103
Проверил: д.х.н., профессор Киприянов
Н.А.
Зав. кафедрой: д.т.н., проф. Воробьев А.Е.
Москва, 2011
Ма́рганец — элемент побочной подгруппы седьмой группы четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 25. Обозначается символом Mn (лат. Manganum, ма́нганум, в составе формул по-русски читается как марганец, например, KMnO4 — калий марганец о четыре; но нередко читают и как манган). Простое вещество марганец (CAS-номер: 7439-96-5) — металл серебристо-белого цвета. Известны пять аллотропных модификаций марганца — четыре с кубической и одна с тетрагональной кристаллической решёткой.
Один из основных материалов марганца — пиролюзит — был известен в древности как черная магнезия и использовался при варке стекла для его осветления. Его считали разновидностью магнитного железняка, а тот факт, что он не притягивается магнитом, Плиний Старший объяснил женским полом черной магнезии, к которому магнит «равнодушен». В 1774 г. шведский химик К. Шееле показал, что в руде содержится неизвестный металл. Он послал образцы руды своему другу химику Ю. Гану, который, нагревая в печке пиролюзит с углем, получил металлический марганец. В начале XIX века для него было принято название «манганум» (от немецкого Manganerz — марганцевая руда).
На воздухе марганец окисляется, в результате чего его поверхность покрывается плотной оксидной пленкой, которая предохраняет металл от дальнейшего окисления. При прокаливании на воздухе выше 800°C марганец покрывается окалиной, состоящей из внешнего слоя Mn3O4 и внутреннего слоя состава MnO.
Марганец образует несколько оксидов: MnO, Mn3O4, Mn2O3, MnO2 и Mn2O7. Все они, кроме Mn2O7, представляющего собой при комнатной температуре маслянистую зеленую жидкость с температурой плавления 5,9°C, твердые кристаллические вещества.
Монооксид марганца MnO образуется при разложении солей двухвалентного марганца (карбоната и других) при температуре около 300°C в инертной атмосфере:
MnCO3 = MnO + CO2
Этот оксид обладает полупроводниковыми свойствами. При разложении MnOОН можно получить Mn2O3. Этот же оксид марганца образуется при нагревании MnO2 на воздухе при температуре примерно 600°C:
4MnO2 = 2Mn2O3 + O2
Оксид Mn2O3 восстанавливается водородом до MnO, а под действием разбавленных серной и азотной кислот переходит в диоксид марганца MnO2.
Если MnO2 прокаливать при температуре около 950°C, то наблюдается отщепление кислорода и образование оксида марганца состава Mn3O4:
3MnO2 = Mn3O4 + O2
Этот оксид можно представить как MnO·Mn2О3, и по свойствам Mn3О4 соответствует смеси этих оксидов.
Диоксид марганца MnO2 — наиболее
распространенное природное соединение
марганца в природе, существующее в
нескольких полиморфных формах. Так
называемая b-модификация MnO2 — это
уже упоминавшийся минерал
Диоксид марганца нестехиометричен, в его решетке всегда наблюдается дефицит кислорода. Если оксиды марганца, отвечающие его более низким степеням окисления, чем +4, — основные, то диоксид марганца обладает амфотерными свойствами. При 170°C MnO2 можно восстановить водородом до MnO.
Если к перманганату калия KMnO4 добавить концентрированную серную кислоту, то образуется кислотный оксид Mn2O7, обладающий сильными окислительными свойствами:
2KMnO4 + 2H2SO4 = 2KHSO4 + Mn2O7 + H2O.
Mn2O7 — кислотный оксид,
ему отвечает сильная, не
При взаимодействии марганца с галогенами образуются дигалогениды MnHal2. В случае фтора возможно также образование фторидов состава MnF3 и MnF4, а в случае хлора — также трихлорида MnCl3. Реакции марганца с серой приводят к образованию сульфидов составов MnS (существует в трех полиморфных формах) и MnS2. Известна целая группа нитридов марганца: MnN6, Mn5N2, Mn4N, MnN, Mn6N5, Mn3N2.
С фосфором марганец образует фосфиды составов MnР, MnP3, Mn2P, Mn3P, Mn3P2 и Mn4P. Известно несколько карбидов и силицидов марганца.
С холодной водой марганец реагирует очень медленно, но при нагревании скорость реакции значительно возрастает, образуется Mn(OH)2 и выделяется водород. При взаимодействии марганца с кислотами образуются соли марганца (II):
Mn + 2HCl = MnCl2 + H2.
Из растворов солей Mn2+
можно осадить плохо
Mn(NO3)2 + 2NaOH = Mn(OH)2 + 2NaNO3
Марганцу отвечает несколько кислот, из которых наиболее важны сильные неустойчивые марганцоватая кислота H2MnO4 и марганцовая кислота HMnO4, соли которых — соответственно, манганаты (например, манганат натрия Na2MnO4) и перманганаты (например, перманганат калия KMnO4).
Манганаты (известны манганаты только щелочных металлов и бария) могут проявлять свойства как окислителей (чаще)
2NaI + Na2MnO4 + 2H2O = MnO2 + I2 + 4NaOH,
так и восстановителей
2K2MnO4 + Cl2 = 2KMnO4 + 2KCl.
В водных растворах манганаты диспропорционируют на соединения марганца (+4) и марганца (+7):
3K2MnO4 + 3Н2О = 2KMnO4 + MnO2·Н2О + 4КОН.
При этом окраска раствора из зеленой переходит в синюю, затем в фиолетовую и малиновую. За способность изменять окраску своих растворов К. Шееле назвал манганат калия минеральным хамелеоном.
Перманганаты — сильные окислители. Например, перманганат калия KMnO4 в кислой среде окисляет сернистый газ SO2 до сульфата:
2KMnO4 + 5SO2 +2H2O = K2SO4 + 2MnSO4 + 2H2SO4.
При давлении около 10 МПа
безводный MnCl2 в присутствии
Промышленное получение марганца начинается с добычи и обогащения руд. Если используют карбонатную руду марганца, то ее предварительно подвергают обжигу. В некоторых случаях руду далее подвергают сернокислотному выщелачиванию. Затем обычно марганец в полученном концентрате восстанавливают с помощью кокса (карботермическое восстановление). Иногда в качестве восстановителя используют алюминий или кремний. Для практических целей чаще всего используют ферромарганец, полученный в доменном процессе при восстановлении руд железа и марганца коксом. В ферромарганце содержание углерода составляет 6-8 % по массе.
Чистый марганец получают электролизом водных растворов сульфата марганца MnSO4, который проводят в присутствии сульфата аммония (NH4)2SO4. более 90% производимого марганца идет в черную металлургию. Марганец используют как добавку к сталям для их раскисления, десульфурации (при этом происходит удаление из стали нежелательных примесей — кислорода, серы и других), а также для легирования сталей, т. е. улучшения их механических и коррозионных свойств. Марганец применяется также в медных, алюминиевых и магниевых сплавах. Покрытия из марганца на металлических поверхностях обеспечивают их антикоррозионную защиту. Для нанесения тонких покрытий из марганца используют легко летучий и термически нестабильный биядерный декакарбонил Mn2(CO)10.
Соединения марганца (карбонат, оксиды и другие) используют при производстве ферритных материалов, они служат катализаторами многих химических реакций, входят в состав микроудобрений. Перманганат калия применяют для отбеливания льна и шерсти, обесцвечивания технологических растворов, как окислитель органических веществ. В медицине применяют некоторые соли марганца. Например, перманганат калия используют как антисептическое средство в виде водного раствора, в некоторых случаях раствор применяют при отравлении алкалоидами и цианидами.
3. Марганец - 14-й элемент по распространенности на земле, а после железа второй тяжелый металл, содержащийся в земной коре (около 0.1% по массе или 0.03% от общего числа атомов земной коры ). Весовое количество марганца увеличивается от кислых (600 г/т) к основным породам (2,2 кг/т). Сопутствует железу во многих его РУДАХ, однако встречаются и самостоятельные месторождения марганца. Общее число марганцевых минералов, встречающихся в природе, превышает 150. Однако широко распространенных и содержащих повышенное количество Мп минералов немного.
Наиболее распространенные минералы марганца:
· пиролюзит MnO2·xH2O, самый распространённый минерал (содержит 63,2 % марганца);
· манганит (бурая манганцевая руда) MnO(OH) (62,5 % марганца);
· браунит 3Mn2O3·MnSiO3 (69,5 % марганца);
· гаусманит (MnIIMn2III)O4
· родохрозит (марганцевый шпат, малиновый шпат) MnCO3 (47,8 % марганца);
· псиломелан mMnO • MnO2 • nH2O (45-60 % марганца);
· пурпурит (Mn3+[PO4]), 36,65 % марганца.
4. Месторождения марганца в мире
Распределение выявленных ресурсов марганцевых руд в мире
Материк |
Млн. тонн |
% |
Африка |
14330 |
67,4 |
Европа |
3440 |
16,2 |
Азия |
1650 |
7,8 |
Америка |
1200 |
5,6 |
Австралия и Океания |
650 |
3,0 |
Распределение ресурсов марганцевых руд по отдельным странам
Страна |
млн. тонн |
% |
ЮАР |
13600 |
63,9 |
Украина |
2500 |
11,8 |
Австралия |
630 |
2,9 |
Габон |
500 |
2,4 |
Казахстан |
500 |
2,4 |
Бразилия |
420 |
2,0 |
По упрощенной классификации главные промышленные марганцевые месторождения суши подразделяются на:
1) пластовые месторождения железо-марганцевых и марганцевых руд в осадочных, вулканогенно-осадочных и метаморфических породах;
2) месторождения коры
выветривания метаморфических
3) гидротермальные месторождения.
Именно из этих трёх типов в настоящее время и добывается основная масса марганцевого сырья. В пластовых месторождениях, расположенных в Австралии, Болгарии, Боливии, Габоне, Грузии, Казахстане, Китае, Мексике, Российской Федерации, Украине и ЮАР, заключено до 90% мировых подтверждённых запасов марганца. Около 8% месторождений находится в древних корах выветривания. Такие месторождения разведаны в Бразилии, Буркина-Фасо, Гане, Индии, Кот-д’Ивуаре, Мали и других странах. Оставшиеся 2% представлены мелкими гидротермальными месторождениями на территории Алжира, Аргентины, Боливии, Египта и Марокко.
Значительные прогнозные
ресурсы марганцевых руд
Мировые запасы марганца
Для производства марганцевой продукции (ферромарганца, оксидов, различных солей и т.п.) используются марганцевые руды. Средние содержания металла в них составляют от 17 до 53%. Наиболее "вредной" примесью марганцевого сырья является фосфор. Желательно, чтобы его содержание в руде не превышало 0,2% от количества марганца. Уникальные марганцевые месторождения содержат запасы руды, превышающие один миллиард тонн, крупные – сотни миллионов, а средние и мелкие – десятки миллионов тонн.
Ресурсы марганцевых руд установлены в 56 странах мира и оцениваются в 21,3 млрд. тонн. В силу того, что достоверные оценки мировых прогнозных ресурсов марганца составляют коммерческую тайну, обнаружение среднемасштабных месторождений ещё возможно в пределах относительно слабо изученных территорий. К таковым можно отнести отдельные районы Австралии, Аргентины, Боливии, Бразилии, Ботсваны, Буркина-Фасо, Габона, Демократической Республики Конго, Индии, Ирана, Марокко, Перу, Турции и Чили. Суммарные прогнозные ресурсы этих стран оцениваются в 2500 млн. тонн.
Основные производители марганцево-рудной продукции (2010 год)
Страна |
Тыс. тонн |
Китай |
4000 |
ЮАР |
3613 |
Украина |
2741 |
Бразилия |
2200 |
Габон |
1743 |
Австралия |
1614 |
Индия |
1583 |
Более 95% мировых общих запасов локализованы в 13 странах (в порядке убывания): ЮАР, Украина, Казахстан, Габон, Бразилия, Китай, Австралия, Боливия, Грузия, Мексика, Болгария, Российская Федерация и Индия. Высокосортными рудами обладают лишь ЮАР, Габон, Австралия и Бразилия, в остальных странах руды среднего и низкого качества.
Ежегодный экспорт товарной марганцевой руды (2010 год)
Страна |
Тыс. тонн |
ЮАР |
7074 |
Габон |
2000 |
Бразилия |
1090 |
Австралия |
1066 |
Гана |
300 |
Индия |
300 |
Украина |
284 |
Добыча марганцевых руд и производство концентратов осуществляется в 30 странах мира. Основной объём товарных марганцевых руд используется в производстве марганцевых сплавов (ферромарганца, силикомарганца, ферросилиция и др.), а также марганца-металла. Главными мировыми производителями сплавов являются страны, ведущие основную добычу марганцевых руд (ЮАР, Украина, Китай), а также обладающие технологическим потенциалом и достаточно дешевой электроэнергией для её переработки (Япония, Франция, Норвегия). Они формируют лидирующую шестерку мира по производству марганцевых сплавов.