Предпосылки использования химических реагентов в процессах подготовки нефти

Автор работы: Пользователь скрыл имя, 22 Декабря 2011 в 21:31, реферат

Описание

Подготовка нефти на промыслах занимает важное положение среди основных процессов, связанных с добычей, сбором и транспортированием товарной нефти потребителю - нефтеперерабатывающим заводам или на экспорт. От качества подготовленной нефти зависят эффективность и надежность работы магистрального трубопроводного транспорта, качество полученных из нее продуктов.
На конечных стадиях разработки нефтяных месторождений содержание воды в нефти может достигать 90% и более, при этом сырье, поступающее на установки подготовки нефти, характеризуется не только разнообразием физико-химических свойств, но и изменением его состава во времени.

Работа состоит из  1 файл

РЕФЕР.doc

— 137.50 Кб (Скачать документ)

P(rc) = Рс.

Таким образом, граничные условия выполняются. Из (2.13) и (2.14) следует, что функция P(r) является логарифмической, т. е. давление вблизи стенок скважины изменяется сильно, а на удаленном расстоянии - слабо. Это объясняется увеличением скоростей фильтрации при приближении струек тока к стенкам скважины, на что расходуется больший перепад давления.

Рассмотрим случай радиального притока в скважину при произвольно изменяющейся вдоль радиуса гидропроводности.

Проинтегрируем  в (2.8) правую часть и перепишем  результат следующим образом:

. (2.15)

Подынтегральная функция

. (2.16)

может быть построена  графически по заданным значениям ε  для различных радиусов и проинтегрирована в пределах от rс до Rк любым  методом приближенного интегрирования или измерением планиметром площади под кривой у(r) в заданных пределах.

В некоторых  случаях добывающая скважина дренирует  одновременно несколько пропластков  с различными проницаемостями, толщинами, вязкостями нефти, а также пластовыми давлениями. Однако приток в такой сложной системе будет происходить при одинаковом забойном давлении (приведенном). При этом некоторые пропластки с меньшим пластовым давлением, чем на забое скважины, способны поглощать жидкость. В любом случае общий приток такого многослойного пласта будет равен алгебраической сумме притоков из каждого пропластка:

. (2.17)

Формулы радиального  притока, вследствие их простоты, часто используются в инженерных расчетах. При этом погрешности в оценке исходных параметров, таких как k, h, μ, (Pк - Pс), непосредственно влияют на величину q. Что касается величин Rк и rс, то, поскольку они находятся под знаком логарифма, в отношении их допустимы значительные погрешности.

Пример. Допустим истинное значение Rк = 100 м, а в расчете  по ошибке было принято Rк = 1000 м, т. е. допущена 10-кратная ошибка. Тогда истинный приток

, (2.18)

где rc = 0,1 м.

Расчетный приток

. (2.19)

Сравнение производим при прочих равных условиях, деля (2.18) на (2.19):

. (2.20)

Откуда qрасч = 3/4 qист. Т. е. расчетный дебит будет  составлять 75% истинного дебита.

При применении формулы радиального притока для скважины, расположенной среди других добывающих скважин, за Rк принимают половину расстояния до соседних скважин или средневзвешенную по углу величину этого расстояния. Формула радиального притока часто используется для определения гидропроводности по известным дебиту и давлениям.

Поскольку формулы  описывают радиальную фильтрацию в  пласте, то в них необходимо подставлять  значение вязкости нефти при пластовых  условиях, то есть при пластовых  температуре и давлении с учетом соответствующего количества растворенного газа. Вычисленный дебит q (объемный расход жидкости) также получается при пластовых условиях. Для перевода дебита к нормальным поверхностным условиям необходимо вычисленный дебит разделить на объемный коэффициент пластовой жидкости.  

При движении нефти, газа и пластовой воды по стволу скважины, выкидным линиям и сборным коллекторам, давление в них понижается и растворимость CO2 в воде уменьшается, в результате чего из нее выделяется диоксид углерода, при этом нарушается карбонатное равновесие (6.26). Для восстановления равновесия избыток бикарбонат – ионов HCO3- удаляется из системы путем превращения бикарбонатов кальция и магния в карбонаты (6.23), которые выпадают в осадок и отлагаются на стенках труб, снижая их пропускную способность.

Итак, причинами выпадения солей являются:

1.         снижение давления;

2.         повышение температуры, причем, снижение давления более интенсивно влияет на равновесие реакции, чем снижение температуры;

3.         пересыщение раствора растворимой солью по причине изменения давления и температуры или смешения вод одного типа, но с разной концентрацией ионов; например, при закачке воды, содержащей бикарбонат кальция, в пласты с высокой температурой равновесие                       4.         изменение химического состава воды при смешении вод различных типов:           

 Образование  нерастворимых соединений при  смешении нагнетаемой и пластовой  вод может являться одной из  причин возрастания фильтрационного  сопротивления при закачка воды  в пласт. Воды, закачиваемые в нефтяные залежи, по солевому составу могут отличаться от пластовых вод этих залежей. При закачке воды, содержащей сульфат — ионы, в пласты, насыщенные хлоркальциевой водой, т.е. содержащей повышенное количество Ca2+, в порах пласта в результате смешения этих вод может образоваться сернокислый кальций, выпадающий в осадок в виде кристаллов гипса: 
 

Пластовые воды весьма существенно влияют на качественные и количественные показатели работ при углублении ствола, креплении и цементировании нефтяных и газовых скважин. Пластовые воды — постоянные спутники нефтегазовых месторождений. Они играют важную роль в поисках, формировании и разработке залежей.

Вода различается  по наличию растворенных в ней  примесей и солей. По температуре  воды делятся на холодные, теплые, горячие и очень горячие. Температура воды существенно влияет на количество содержащихся в ней солей и газов. По положению относительно нефтегазоносных горизонтов пластовую воду относят к краевой, подошвенной воде; она бывает верхней, нижней, погребенной (реликтовой), находящейся непосредственно в нефтяном пласте и остающейся неподвижной при движении нефти. Солевой состав вод в нефтяном пласте неодинаков для всех частей структуры.

При изучении пластовых  вод для характеристики их свойств  принято определять общую минерализацию воды и ее жесткость, содержание главных шести ионов, рН, плотность, запах, вкус, прозрачность, поверхностное натяжение, а также проводить анализ растворенных газов — бактериологический или микробиологический. Минерализация вод нефтяных месторождений колеблется от нескольких сотен г/м3 в пресной воде до 300 кг/м3 в концентрированных рассолах.

Общая минерализация  воды выражается суммой содержащихся в ней химических элементов, их соединений и газов. Ее оценивают по сухому (или  плотному) остатку, который получается после выпаривания воды при температуре 105—110 °С. По размеру сухого остатка воды разделяются на пресные (содержание солей 1 г/л), слабосолоноватые (1—5 г/л), солоноватые (5—10 г/л), соленые (10 — 50 г/л), рассолы (50 г/л).

Главные химические компоненты в подземных водах: хлор-ион  С1~, сульфат-ион SO4", гидрокарбонатный и карбонатный ионы НСО3 и СО3", а также ионы щелочных и щелочноземельных металлов и оксидов: натрия Na  , кальция Са    , магния Мд    , железа Fe     и SiO2 (в коллоидном со-

стоянии). В воде растворяются азот, кислород, углекислый газ, сероводород и т.д. В настоящее  время принятая форма химического  анализа воды — ионная. Так как  молекулы солей в растворе распадаются  на катионы и анионы, те и другие должны находиться в эквивалентных количествах. Для перевода результатов анализа воды, выраженных в ионной форме, в эквивалентную следует количество каждого найденного элемента (в мг/л) разделить на его эквивалентную массу. Эквиваленты ионов могут быть выражены также в процентах от суммы анионов и катионов, каждая сумма анионов и катионов принимается за 50 или 100 %.

Для подземных  вод нефтегазовых месторождений  характерно повышенное содержание йода, брома, бора, аммония и вблизи нефтяной залежи — нафтеновых кислот. По их химическому составу это обычно хлорид-но-кальциево-натриевые рассолы с общей минерализацией 50 г/л и выше. Воды нефтяных месторождений бывают кислые и щелочные гидрокарбо-натно-натриевого и иногда хлоридно-сульфатно-натриевого состава.

При оценке подземных вод (для питания паровых котлов, хозяйственных целей и т.д.) следует обращать внимание на жесткость воды, под которой понимают свойство воды, обусловленное содержанием в ней солей кальция и магния: Са(НСО3)2, Mg(HCO3)2, CaSOH, CaCO3, СаС12, МдС12. Различают жесткость общую, характеризующуюся присутствием солей Са и Мд, постоянную, обусловленную содержанием солей Са и Мд, за исключением бикарбонатов, и временную, определяемую наличием бикарбонатов Са и Мд. Временная жесткость воды может быть найдена по разности общей и постоянной. Кипяченая вода характеризуется только постоянной жесткостью. По О.А. Алексину, природные воды по жесткости разделяются на следующие типы: очень мягкие, умеренно жесткие, жесткие и очень жесткие.

В связи с  большим разнообразием природных вод многими исследователями были предложены различные системы классификации вод на основе тех или иных признаков. Большинство классификаций основано на химическом составе природных вод и количественных соотношениях между отдельными компонентами растворенных в воде веществ. Наиболее интересные классификации предложены В.И. Вернадским, В.А. Александровым, В.А. Сулиным, Пальмером.

Для характеристики качества воды используются шесть показателей: первичная соленость, первичная  щелочность, вторичная соленость, вторичная щелочность, третичная соленость, третичная щелочность.

В соответствии с классификацией природных вод  по В.А. Сулину, применяемой в нефтегазодобывающей  промышленности,  последние под-

разделяются на четыре генетических типа: I — сульфатно-натриевые; II — гидрокарбонатно-натриевые; III — хлормагниевые; IV — хлоркальциевые. Принадлежность воды к определенному генетическому типу устанавливают по отношению эквивалентов отдельных ионов.

Согласно классификации  природных вод по В.А. Сулину, каждый тип вод подразделяется на группы: А — гидрокарбонатные, Б — сульфатные, В — хлоридные. Группы, в свою очередь, подразделяются на классы и подгруппы. Воды относят к определенной группе и подгруппе на основании отношения эквивалентов отдельных ионов.

В большинстве  пластовых вод содержатся анионы и мыла нафтеновых и жирных кислот, фенолы и азотсодержащие кислоты.

Информация о работе Предпосылки использования химических реагентов в процессах подготовки нефти