Теоретические основы метода

Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 11:41, лекция

Описание

Гамма-гамма-каротаж (ГГК) основан на измерении характери­стик рассеянного гамма-излучения, возникающего при облуче­нии горных пород внешним источником гамма-излучения. Глав­ными во взаимодействии гамма-излучения с веществом явля­ются образования электрон-позитронных пар, фотоэффект и комптон-эффект.
Электрон-позитронные пары образуются при взаи­модействии -квантов очень высокой энергии (более 5—10 МэВ) с ядром атома. При этом -квант исчезает, и в электрическом поле ядер образуются пары электрон-позитрон.

Работа состоит из  1 файл

1.doc

— 104.00 Кб (Скачать документ)


1 Теоретические основы метода

 

Гамма-гамма-каротаж (ГГК) основан на измерении характери­стик рассеянного гамма-излучения, возникающего при облуче­нии горных пород внешним источником гамма-излучения. Глав­ными во взаимодействии гамма-излучения с веществом явля­ются образования электрон-позитронных пар, фотоэффект и комптон-эффект.

Электрон-позитронные пары образуются при взаи­модействии -квантов очень высокой энергии (более 5—10 МэВ) с ядром атома. При этом -квант исчезает, и в электрическом поле ядер образуются пары электрон-позитрон.

При фотоэффекте происходит поглощение -кванта од­ним из электронов атома, причем энергия -кванта преобразу­ется в кинетическую энергию электрона, вылетающего за пре­делы атома (гамма-квант передает всю свою энергию одному из электронов внутренней оболочки). Вероятность фотоэффекта резко увеличивается с увеличением I и уменьшением энергии излучения. В веществах, содержащих элементы с 2<20, для гамма-излучения с £>200 кэВ влияние фотоэффекта мало.

При комптон-эффекте в отличие от фотоэффекта -квант не исчезает, а лишь передает часть энергии одному из электронов атома (становится менее жестким) и меняет направ­ление движения (рассеивается). Этот вид взаимодействия яв­ляется основным в среде, содержащей легкие (2<20) эле­менты, для излучений с энергией 0,5—1 МэВ. В процессе рас­сеяния энергия кванта уменьшается до величины, при которой он поглощается в результате фотоэффекта. Для квантов с на­чальной энергией £ = 0,5-М МэВ число актов рассеяния до по­глощения в горной породе составляет в среднем 6—8. Интен­сивность комптоновского рассеяния пропорциональна числу электронов в единице объема вещества, и поэтому вероятность этого процесса пропорциональна атомному номеру вещества.

В действительности кажущаяся плотность п.к, зависящая от числа электронов в единице объема пород, отличается от ис­тинной плотности породы  п.

В методе ГГК различают две основные модификации: плотностной гамма-гамма-каротаж (ГГКП) и селективный гамма-гамма-каротаж (ГГКС).

Процессы взаимодействия γ-излучения с веществом

Существуют 3 основных процесса, которые носят названия фотопоглощения, комптоновского рассеяния и образования пар.

Фотопоглощение (фотоэффект) заключается в поглощении γ-кванта атомом вещества, его энергия уходит на отрыв от атома электрона и сообщение последнему импульса энергии. Атом остается возбужденным и переходит в нормальное состояние, испуская фотон рентгеновского излучения.

Фотоэффект наблюдается при самых малых энергиях γ-квантов. Вероятность поглощения  τф, при фотоэффекте   сложным   образом   зависит   от   энергии   γ-кванта    Еγ    и химического состава вещества.

Комптоновское рассеяние - это неупругое рассеяние γ-квантов на электронах вещества, в результате которого γ-квант теряет часть своей энергии и меняет направление движения. Наблюдается комптон-эффект при более высоких энергиях, условно можно считать Еγ > 0,5 МэВ.

Вероятность комптон-эффекта τγ зависит от сечения комптоновского рассеяния σк, которое, в свою очередь, является функцией энергии и атомного номера элемента, и от числа электронов в единице объема вещества ηе.

Рисунок 1.1 - Виды взаимодействия гамма-квантов с веществом:

Фотоэффект (а), комптоновское рассеяние (б), образование пар (в),

ядерный  фотоэффект (в)

 

Образование пар - происходит при взаимодействии γ-кванта с полем ядра атома, γ-квант прекращает свое существование, вместо него образуется пара: электрон и позитрон. Вероятность   этого   процесса   невелика,   во-первых,   потому,   что  ядро занимает лишь небольшую часть объема всего атома и, во-вторых, потому, что энергия γ-кванта должна быть достаточной для этой реакции (Eγ > 1,02 МэВ). 

Процесс образования  пар в ядерно-геофизических методах пока не используют.

Ядерный фотоэффект заключается в поглощении γ-кванта ядром атома, после чего ядро становится возбужденным и переходит в нормальное состояние через испускание нейтрона. Нейтрон имеет тепловую энергию. Эта реакция пороговая - энергия γ-кванта должна быть больше энергии связи нейтрона в ядре, а она зависит от массы последнего.

Все рассмотренные процессы в горных породах при облучении их γ-квантами искусственного источника происходят не по отдельности, а совместно. Быстрые γ-кванты исчезают в результате образования пар и замедляются в результате комптоновского рассеяния, рассеянные поглощаются в результате фотоэффекта. Преобладание того или иного процесса зависит от энергии γ-квантов и свойств горной породы - ее плотности и эффективного номера.

В зависимости от того, какой из процессов подвергается исследованию, в ГГК выделяют 2 основные разновидности метода: плотностной и селективный γ-γ-каротаж.

Для узкого пучка гамма – квантов суммарное сечение взаимодействия с веществом:

J = J exp (μ∑ * r)                                                                      [1.1]

 

μ∑  - имеет смысл линейного коэффициента ослабления.

 

J =(1/4πr2) J exp (μ∑ * r)                                                    [1.2]

 

Из приведённых в главе формул микроскопических сечений взаимодействия можно сделать вывод, о том, что только сечения Комптон – эффекта однозначно зависит от плотности среды. Действительно, отношение Z / Am для породообразующих минералов стабилен и равен 0,5, для водорода = 1, для тяжёлых элементов  >0,5, но малое их содержание вносит погрешность, на мой взгляд, меньший, чем погрешность измерений, и ими мы пренебрегаем. Другими словами, сечение Комптон – эффекта пропорционально плотности среды через некоторую const.

Эффект Комптоновского рассеяния имеет смысл некогерентного. В среде также возможно упругое (когерентное) рассеяние. Но когерентное рассеяние начинает происходить при энергиях гамма – кванта менее приблизительно 50 кэВ, а гамма – кванты с такой энергией фильтруются.

Из вышесказанного понятно, что для определения плотности информация, полученная в процессе искажения первичного потока гамма – квантов другими видами взаимодействий, является помехой. Для решения этой задачи рассмотрим вероятности протекания различных видов взаимодействий в зависимости от энергии гамма – квантов.

Взаимодействие с образованием электронно–позитронных пар происходит при энергиях больше 1,022 МэВ. Вероятность фотоэффекта дискретна и растёт с коротковолновой стороны, начиная с энергий около 0,2 МэВ. Сечение Комптон – эффекта в энергетическом окне 0,2, 1 МэВ практически постоянно, и в этом окне крайне мало вероятны другие взаимодействия. Сделаем вывод, что если снимать информацию с гамма – квантов этого энергетического окна, то она будет характеризовать только плотность среды или горной породы. Информация носит характер ослабления потока гамма – квантов, испускаемых источником, в процессе некогерентного Комптоновского рассеяния на электронах среды. Полевые измерения реализуются в измерении скорости счёта гамма – квантов J [имп /сек], пришедших на детектор, но осреднённому по объёму области, в котором существует поле, где изменение скорости счёта происходит прямо пропорционально изменению плотности среды.

В интервале рабочих энергий углы рассеяния лежат в области 2π, причем отражения на угол более 90 становятся вероятнее с снижением энергии, таким образом накапливаются. Распределение плотности гамма – квантов зависит от двух параметров  - плотности и расстояния от источника.

7

 



Информация о работе Теоретические основы метода