Автор работы: Пользователь скрыл имя, 16 Февраля 2012 в 22:03, реферат
В своем реферате на тему «Биологическая наследственность. Генетический код. Геном человека.” я рассказал о первых шагах генетики , о сегодняшнем дне этой увлекательной науки и о том , чего ждем мы от нее в ближайшем будущем . Также подробно были рассмотрены достижения современной генетики на молекулярном уровне , которая включает в себя биологию и генетику , законы передачи наследственных признаков и структуру генетического вещества , структуру и функции гена , гены и согласованность клеточных функций , наследственность и эволюцию.
Введение.............................................................................................. .................................3
Предисловие (Актуальность)......................................................... ...................................4
Наследственность........................................................................... ...................................6
Условные рефлексы.............................................................................................................6
Генетические карты хромосом.............. . ..........................................................................7
Генетика пола............................................... .......................................................................9
Молекулярная генетика. Генетическая информация. Генетический код....................9
Наследственность и эволюция................................................. ........................................12
Генетика человека................................................................. ............................................13
Наследственность и среда.................................................................................................14
Лечение и профилактика наследственных болезней.....................................................16
Гены индивидуальности.................................................................................................17
Заключение.........................................................................................................................19
Список используемой литературы.......... .....
Негосударственное образовательное учреждение высшего профессионального образования
МОСКОВСКАЯ АКАДЕМИЯ ПРЕДПРИНИМАТЕЛЬСТВА
при Правительстве Москвы
(НОУ ВПО МосАП)
Ярославский филиал
Факультет: Финансово-экономический
Специальность: «Менеджер организации»
РЕФЕРАТ
По дисциплине: «Концепции современного естествознания»
Тема: «Биологическая наследственность. Генетический код. Геном человека»
(подпись)
(подпись)
Ярославль, 2011г.
Оглавление……………………………………………………
Введение......................
Предисловие (Актуальность)................
Наследственность..............
Условные рефлексы......................
Генетические карты хромосом.............. . ..............................
Генетика пола..........................
Молекулярная генетика. Генетическая информация. Генетический код....................9
Наследственность и эволюция......................
Генетика человека......................
Наследственность и среда.........................
Лечение и профилактика наследственных болезней......................
Гены индивидуальности..............
Заключение....................
Список используемой литературы.......... ..............................
Введение
В своем реферате на тему «Биологическая наследственность. Генетический код. Геном человека.” я рассказал о первых шагах генетики , о сегодняшнем дне этой увлекательной науки и о том , чего ждем мы от нее в ближайшем будущем . Также подробно были рассмотрены достижения современной генетики на молекулярном уровне , которая включает в себя биологию и генетику , законы передачи наследственных признаков и структуру генетического вещества , структуру и функции гена , гены и согласованность клеточных функций , наследственность и эволюцию. В этой работе ведется ознакомление с огромным вкладом генетики в соседние с ней области биологии – учение о происхождении жизни , систематику и эволюцию организмов.
Предисловие
Испокон веков человек стремился узнать, почему от живых организмов рождаются им подобные ? И при этом не отмечается абсолютной схожести родителей и потомства ни в физических признаках, ни в характере.
Теперь очевидно, что схожесть родителей и потомков организмов одного вида определяется наследственностью, а их отличительные особенности - изменчивостью. Два свойства – наследственность и изменчивость - характерны не только для человека, но и для всего живого на Земле. Изучением этих важнейших свойств живых существ занимается наука, называемая
генетикой.
Конечно, на первый взгляд, кажется что все мы можем совершенно спокойно жить, не зная сущности секретов наследственности, и что все это неважно. Но так ли это на самом деле?
Как, не зная генетики, объяснить, почему обезьяна не превращается в белого медведя, если даже поселить ее на Крайнем Севере, и почему белый медведь, даже если он родился в зоопарке где-нибудь на юге, все равно остается белым? Сумеют ли работники сельского хозяйства в ближайшем будущем получать с каждого гектара сотни центнеров пшеницы? Скажутся через какие-нибудь 50-100 лет последствия атомных взрывов на потомках современных жителей Хиросимы и Нагасаки? Отчего дети похожи на своих родителей? Грозит ли человечеству вымирание, или мы находимся у начала развития земной цивилизации? Почему без вмешательства человека рожь остается рожью, а пшеница – пшеницей? Каковы причины наследственных заболеваний и как с ними бороться? Сколько способен прожить человек? Могут ли все люди на Земле быть гениями?
Есть еще тысячи и тысячи подобных вопросов, имеющих очень важное значение как для отдельных людей, так и для всего человечества, ответить на которые нельзя , не познав секреты наследственности и не научившись управлять ею. Когда же человек раскроет все эти тайны и поставит знания себе на пользу, он сможет участвовать в решении практических задач сельского хозяйства, медицины, научится управлять эволюцией жизни на нашей планете в целом.
Вместе с тем не надо забывать, что для духовной жизни и целенаправленной деятельности современного человека исключительно важное значение приобретает научное мировоззрение. Среди философских вопросов нового естествознания один из главных – понимание сущности жизни, ее места в мироздании. И только современная молекулярная генетика сумела показать, что жизнь – это поистине материальное, саморазвивающееся явление. Отражающее влияние условий внешней среды.
Но она также доказала, что жизнь обладает системностью, которую невозможно разложить на составляющие ее физико-химические процессы. Однако, современная наука еще не знает полностью сущности жизни.
Еще один вопрос: от чего зависит настоящее и будущее человечества? Проблема эта интересовала людей много веков назад и в ней меньшей степени волнует сегодня. Это и не удивительно, так как человек отличается от всего окружающего мира в первую очередь тем, что испытывает влияние не только биологических законов. Будущее его не в меньшей, если не в большей степени зависит от социального переустройства мира.
Наследственная информация человека передается от поколения к поколению. Все биологические особенности, послужившие основой для появления человека, обладающего сознанием, закодированы в наследственных структурах, и их передача поколениям является обязательным условием для существования на Земле человека как разумного существа. Человек как биологический вид – это самое высокое и при этом уникальное “ достижение “ эволюции на нашей планете. И пока еще никто не может сказать с уверенностью или представить неопровержимые доказательства того , что это не касается всей Вселенной.
Основы генетики были заложены чешским ученым Грегором Менделем в эксперементах, результаты которых были опубликованы в 1865 г. С тех пор генетика не остановилась в своем развитии. И. М. Сеченов, А. П. Богданов, Н. К. Кольцов, Г. Шаде, Эвери, Мак-Леод, Мак-Карти, Д. Уотсон- вот одни из тех великих ученых, которые внесли огромный вклад в науку о наследственности.
В последние годы на фоне общего снижения заболеваемости и смертности увеличился удельный вес врожденных и наследственных болезней. В связи с этим роль генетики в практической медицине значительно возросла. ” Без знания генетики нельзя эффективно проводить диагностику наследственных и врожденных заболеваний.”
Наследственность
Наследственность - присущее всем организмам свойство повторять в ряду поколений одинаковые признаки и особенности развития; обусловлено передачей в процессе размножения от одного поколения к другому материальных структур клетки, содержащих программы развития из них новых особей. Тем самым наследственность обеспечивает преемственность морфологической, физиологической и биохимической организации живых существ, характера их индивидуального развития, или онтогенеза. Как общебиологическое явление наследственность - важнейшее условие существования дифференцированных форм жизни, признаков организмов, хотя оно нарушается изменчивостью-возникновением различий между организмами. Затрагивая самые разнообразные признаки на всех этапах онтогенеза организмов, наследственность проявляется в закономерностях наследования признаков, т. е. передачи их от родителей потомкам.
Иногда термин наследственность относят к передаче от одного поколения другому инфекционных начал (т. н. инфекционная наследственность) или навыков обучения, образования, традиций (т. н. социальная, или сигнальная наследственность). Подобное расширение понятия
наследственность за пределы его биологической и эволюционной сущности спорно. Лишь в случаях, когда инфекционные агенты способны взаимодействовать с клетками хозяина вплоть до включения в их генетический аппарат, отделить инфекционную наследственность от нормальной затруднительно.
Условные рефлексы
Как мы знаем, условные рефлексы - это индивидуально приобретенные сложные приспособительные реакции организма животных и человека, возникающие при определенных условиях (отсюда название) на основе образования временной связи между условным (сигнальным) раздражителем и подкрепляющим этот раздражитель безусловно рефлекторным актом. Условные рефлексы не наследуются, а заново вырабатываются каждым поколением, однако роль наследственности в скорости закрепления условных рефлексов и особенностей поведения бесспорна. Поэтому в сигнальную наследственность входит компонент биологической наследственности.
Попытки объяснения явлений наследственности, относящиеся к глубокой древности
(Гиппократ, Аристотель и др.), представляют лишь исторический интерес. Только вскрытие сущности полового размножения позволило уточнить понятие наследственности и связать ее с определенными частями клетки. К середине 19 в. благодаря многочисленным опытам по гибридизации растений (Й. Г. Кельрейтер и др.) накапливаются данные о закономерностях наследственности. В 1865 году Г. Мендель в ясной математической форме сообщил результаты своих экспериментов по гибридизации гороха. Эти сообщения позднее получили название законов Менделя и легли в основу учения о наследственности - менделизма, почти одновременно были сделаны попытки умозрительно понять сущность наследственности. В книге “Изменения домашних животных и культурных растений” Ч. Дарвин (1868 г.) предложил свою “временную гипотезу пангенезиса”, согласно которой от всех клеток организма отделяются их зачатки-геммулы, которые, двигаясь с током крови, оседают в половых клетках и образованиях, служащих для бесполого размножения (почки и др.) . Таким образом, получалось, что половые клетки и почки состоят из громадного количества геммул. При развитии организма геммулы превращаются в клетки того же типа, из которых они образовались. В гипотезе пангенезиса объединены неравноценные представления: о наличии в половых клетках особых частиц, определяющих последующее развитие особи; о переносе их из клеток тела в половые. Первое положение было плодотворным и привело к современным представлениям о корпускулярной наследственности . Второе, давшее основание для представления о наследовании приобретенных признаков, оказалось неверным. Умозрительные теории наследственности развивали также Ф. Гальтон, К. Негели Х. Де Фриз.
Генетические карты хромосом
Генетические карты хромосом - это схемы относительного расположения сцепленных между собой наследств. факторов — генов. Генетические карты хромосом отображают реально существующий линейный порядок размещения генов в хромосомах и важны как в теоретических исследованиях, так и при проведении селекционной работы, т. к. позволяют сознательно подбирать пары признаков при скрещиваниях, а также предсказывать особенности наследования и проявления различных признаков у изучаемых организмов. Имея Генетические карты хромосом, можно по наследованию «сигнального» гена, тесно сцепленного с изучаемым, контролировать. передачу потомству генов, обусловливающих развитие трудно анализируемых признаков; напр., ген, определяющий сморщенный эндосперм у кукурузы и находящийся в 9-й хромосоме, сцеплен с геном, определяющим пониженную жизнеспособность растения. Многочисленные факты отсутствия (вопреки законам Менделя) независимого распределения признаков у гибридов второго поколения были объяснены хромосомной теорией наследственности.
Итак, выделим основные положения хромосомной теории наследственности:
1. Гены располагаются в хромосомах, различные хромосомы содержат неодинаковое число генов, набор генов каждой из негомологичных хромосом уникален.
2. Гены в хромосоме расположены линейно, каждый ген занимает в хромосоме определенный локус (место).
3. Гены , расположенные в одной хромосоме, образуют группу сцепления и вместе (сцеплено) передаются потомкам, число групп сцепления равно гаплоидному набору хромосом.
4. Сцепление не абсолютно, так как в профазе мейоза может происходить кроссинговер и гены, находящиеся в одной хромосоме, разобщаются. Сила сцепления зависит от расстояния между генами в хромосоме: чем больше расстояние, тем меньше сила сцепления и наоборот.
Генетические карты хромосом составляют для каждой пары гомологичных хромосом. Группы сцепления нумеруют последовательно, по мере их обнаружения. Кроме номера группы сцепления, указывают полные или сокращённые назв. мутантных генов, их расстояния в морганидах от одного из концов хромосомы, принятого за нулевую точку, а также место центромеры. Составить Генетические карты хромосом можно только для объектов, у которых изучено большое число мутантных генов. Например, у дрозофилы идентифицировано свыше 500 генов, локализованных в её 4 группах сцепления, у кукурузы — около 400 генов, распределённых в 10 группах сцепления (рис. 1).
У менее изученных объектов число обнаруженных групп сцепления меньше гаплоидного числа хромосом. Так, у домовой мыши выявлено около 200 генов, образующих 15 групп сцепления (на самом деле их 20); у кур изучено пока всего 8 из 39. У человека из ожидаемых 23 групп сцепления (23 пары хромосом) идентифицировано только 10, причём в каждой группе известно небольшое число генов; наиболее подробные карты составлены для половых хромосом.
У бактерий, которые являются гаплоидными организмами, имеется одна, чаще всего непрерывная, кольцевая хромосома и все гены образуют одну группу сцепления (рис. 2). При переносе генетического материала из клетки-донора в клетку-реципиент, например при конъюгации, кольцевая хромосома разрывается и образующаяся линейная структура переносится из одной бактериальной клетки в другую (у кишечной палочки в течение 110-120 мин).
Генетика пола
Количество групп сцепленных генов оказалось равным количеству пар хромосом, присущих данному виду. Важнейшие доказательства хромосомной теории наследственности были получены при изучении наследования, сцепленного с полом. Ранее цитологии открыли в хромосомных наборах ряда видов животных особые , так называемые половые хромосомы, которыми самки отличаются от самцов. В одних случаях самки имеют 2 одинаковые половые хромосомы(XX), а самцы -разные (XY), в других - самцы-2 одинаковые(XX, или ZZ), а самки - разные(XY, или ZW). Пол с одинаковыми половыми хромосомами называется гомогаметным , с разными - гетерогаметным. Женский пол гомогаметен , а мужской гетерогаметен у некоторых насекомых ( в том числе у дрозофилы) и всех млекопитающих. Обратное соотношение - у птиц и бабочек. Ряд признаков у дрозофилы наследуется в строгом соответствии с передачей потомству X-хромосом. Самка дрозофилы, проявляющая рецесивный признак , например белую окраску глаз, в силу гомозиготности по этому гену, находящемуся в X-хромосоме, передает белую окраску глаз всем сыновьям, так как они получают свою X-хромосому только от матери. В случае гетерозиготности по рецессивному сцепленному с полом признаку самка передает его половине сыновей. При противоположном определении пола (самцы XX, или ZZ; самки-XY, или ZW) особи мужского пола передают сцепленные с полом признаки дочерям, получающим свою X( =Z ) хромосому от отца. Иногда в результате нерасхождения половых хромосом при мейозе возникают самки строения XXY и самцы XYY. Возможны также случаи соединения X-хромосом концами; тогда самки передают сцепленные X-хромосомы своим дочерям, у которых и проявляются сцепленные с полом признаки. Сыновья же похожи на отцов (такое наследование называется гологеническим ). Если наследуемые гены находятся в Y-хромосоме, то определяемые ими признаки передаются только по мужской линии - от отца к сыну (такое наследование называется голандрическим). Хромосомная теория наследственности вскрыла внутриклеточные механизмы наследственности, дала точное и единое объяснение всех явлений наследования при половом размножении, объяснила сущность изменений наследственности, то есть изменчивости.
Молекулярная генетика
Применение новых физических и химических методов, а также использование в качестве объектов исследования бактерий и вирусов резко повысили разрешающую способность генетических экспериментов, привели к изучению наследственности на молекулярном уровне и бурному развитию молекулярной генетики. Впервые Н. К. Кольцов (1927 г) выдвинул и обосновал представления о молекулярной основе наследственности и о матричном способе размножения “наследственных молекул”. В 40-х гг. 20 в. была экспериментально доказана генетическая роль дезоксирибонуклеиновой кислоты ( ДНК ) , а в 50-60-х гг. установлена ее молекулярная структура и выяснены принципы кодирования генетической информации. Генетическая информация, заложенная в наследственных структурах организмов (в хромосомах, цитоплазме, клеточных организмах), получаемая от предков в виде совокупности генов информация о составе, строении и характере обмена составляющих организм веществ (прежде всего белков и нуклеиновых кислот) и связанных с ними функциях. У многоклеточных форм при половом размножении генетическая информация передаётся из поколения в поколение через посредство половых клеток — гамет, единственная функция которых — передача и хранение генетической информации. У микроорганизмов и вирусов имеются особые типы ее передачи . Генетическая информация заключена преимущественно в хромосомах, где она зашифрована в определённой линейной последовательности нуклеотидов в молекулах дезоксирибонуклеиновой кислоты — ДНК (генетический код). Генетический код - это система зашифровки наследственной информации в молекулах нуклеиновых кислот, реализующаяся у животных, растений, бактерий и вирусов в виде последовательности нуклеотидов. В природных нуклеиновых кислотах — дезоксирибонуклеиновой (ДНК) и рибонуклеиновой (РНК)—встречаются 5 распространённых типов нуклеотидов (по 4 в каждой нуклеиновой кислоте), различающихся по входящему в их состав азотистому основанию . В ДНК встречаются основания:
аденин (А), гуанин (Г), цитозин (Ц), тимин (Т); в РНК вместо тимина присутствует урацил (У). Кроме них, в составе нуклеиновых кислот обнаружено около 20 редко встречающихся (т. н. неканонических, или минорных) оснований, а также необычных Сахаров. Так как количество кодирующих знаков Генетического кода (4) и число разновидностей аминокислот в белке (20) не совпадают, кодовое число (т. е. кол-во нуклеотидов, кодирующих 1 аминокислоту) не может быть равно 1. Различных сочетаний по 2 нуклеотида возможно лишь 42 = 16, но этого также недостаточно для зашифровки всех аминокислот. В 1961 Ф. Крик (Великобритания) с сотрудниками получил подтверждение гипотезы триплетного неперекрывающегося кода без запятых. Установлены следующие основы закономерности, касающиеся генетического кода: 1) между последовательностью нуклеотидов и кодируемой последовательностью аминокислот существует линейное соответствие (коллинеарность генетического кода); 2) считывание кода начинается с определённой точки; 3) считывание идёт в одном направлении в пределах одного гена; 4) код является неперекрывающимся; 5) при считывании не бывает промежутков (код без запятых); 6) генетический код, как правило, является вырожденным, т. е. 1 аминокислоту кодируют 2 и более триплетов-синонимов (вырожденность генетического кода уменьшает вероятность того, что мутационная замена основания в триплете приведёт к ошибке); 7) кодовое число равно трём;
8) код в живой природе универсален (за некоторыми исключениями). Универсальность генетического кода подтверждается экспериментами по синтезу белка in vitго. Если в бесклеточную систему, полученную из одного организма (например, кишечной палочки), добавить нуклеиново-кислотную матрицу, полученную из другого организма, далеко отстоящего от первого в эволюционном отношении (например, проростков гороха), то в такой системе будет идти белковый синтез. Благодаря работам американским генетиков М. Ниренберга, С. Очоа, X. Корана известен не только состав, но и порядок нуклеотидов во всех кодонах..
Из 64 кодонов у бактерий и фагов 3 кодона — УАА, УАГ и УГА — не кодируют аминокислот; они служат сигналом к освобождению полипептидной цепи с рибосомы, т. е. сигнализируют о завершении синтеза полипептида. Их наз. терминирующими кодонами. Существуют также 3 сигнала о начале синтеза — это т. н. инициирующие колоны — АУГ, ГУГ и УУГ,— которые, будучи включёнными в начале соответствующей информационной РНК (и-РНК), определяют включение формилметионина в первое положение синтезируемой полипептидной цепи. Приведённые данные справедливы для бактериальных систем; для высших организмов многое ещё не ясно. Так, кодон УГА у высших организмов может быть значащим; не совсем понятен также механизм инициации полипептида.
Реализация генетического кода в клетке происходит в два этапа. Первый из них протекает в ядре; он носит назв. транскрипции и заключается в синтезе молекул и-РНК на соответствующих участках ДНК. При этом последовательность нуклеотидов ДНК « переписывается » в нуклеотидную последовательность РНК. Второй этап — трансляция — протекает в цитоплазме, на рибосомах; при этом последовательность нуклеотидов и-РНК переводится в последовательность аминокислот в белке; этот этап протекает при участии транспортной РНК (т-РНК) и соответствующих ферментов.
Генетическая информация реализуется в ходе онтогенеза — развития особи — ее передачей от гена к признаку. Все клетки организма возникают в результате делений единственной исходной клетки — зиготы — и потому имеют один и тот же набор генов — потенциально одну и ту же генетическую информацию. Специфичность клеток разных тканей определяется тем, что в них активны разные гены, т. е. реализуется не вся информация, а только её часть, необходимая для функционирования данной ткани.
По мере изучения наследственности на субклеточном и молекулярном уровне углублялось и уточнялось представление о гене. Если в опытах по наследованию различных признаков ген постулировался как элементарная неделимая единица наследственности, а в свете данных цитологии его рассматривали как изолированный участок хромосомы, то на молекулярном уровне ген-входящий в состав хромосомы участок молекулы ДНК , способный к самовоспроизведению и имеющий специфическую структуру, в которой закодирована программа развития одного или нескольких признаков организма. В 50-х гг. на микроорганизмах (американский генетик С. Бензер) было показано , что каждый ген состоит из ряда различных участков, которые могут мутировать и между которыми может происходить кроссинговер. Так подтвердилось представление о сложной структуре гена, развивавшееся еще в 30-х гг. А. C. Серебровским и Н. П. Дубининым на основе данных генетического анализа.
В 1967-69 гг. был осуществлен синтез вирусной ДНК вне организма, а также химический синтез гена дрожжевой аланиновой транспортной РНК. Новой областью исследования стала наследственность соматических клеток в организме и в культурах тканей. Открыта возможность экспериментальной гибридизации соматических клеток разных видов. В связи с достижениями молекулярной биологии явления наследственности приобрели ключевое значение для понимания ряда биологических процессов, а также для множества вопросов практики.
Наследственность и эволюция
Еще Дарвину было ясно значение наследственности для эволюции организмов. Установление дискретной природы наследственности устранило
одно из важных возражений против дарвинизма: при скрещивании особей , у которых появились наследственные изменения, последние должны якобы “ разбавляться “ и ослабевать в своем направлении. Однако, в соответствии с законами Менделя, они не уничтожаются и не смешиваются, а вновь проявляются в потомстве в определенных условиях. В популяциях явления наследственности предстали как сложные процессы, основанные на скрещиваниях между особями, отборе, мутациях , генетико-автоматических процессах и др. На это впервые указал С. С. Четвериков (1926 г.) , экспериментально доказавший накопление мутаций внутри популяции. И. И. Шмальгаузен (1946 г.) выдвинул положение о “ мобилизационном резерве наследственной изменчивости “ как материале для творческой деятельности естественного отбора при изменении условий внешней среды. Показано значение разных типов изменений наследственности в эволюции. Эволюция понимается как постепенное и многократное изменение наследственности вида. в то же время наследственность, обеспечивающая постоянство видовой организации, -это коренное свойство жизни, связанное с физико-химической структурой элементарных единиц клетки, прежде всего ее хромосомного аппарата, и прошедшее длительный период эволюции.
Принципы организации этой структуры (генетический код), по-видимому, универсальны для всех живых существ и рассматриваются как важнейший атрибут жизни.
Под контролем наследственности находится и онтогенез, начинающийся с оплодотворения яйца и осуществляющийся в конкретных условиях среды. Отсюда различие между совокупностью генов, получаемых организмом от родителей, — генотипом и комплексом признаков организма на всех стадиях его развития — фенотипом. Роль генотипа и среды в формировании фенотипа может быть различна.
Но всегда следует учитывать генотипически обусловленную норму реакции организма на влияния среды. Изменения в фенотипе не отражаются адекватно на генотипически структуре половых клеток, поэтому традиционное представление о наследовании приобретённых признаков отвергнуто, как не имеющее фактически основы и неправильное теоретически. Механизм реализации наследственности в ходе развития особи, по-видимому, связан со сменой действия разных генов во времени и осуществляется при взаимодействии ядра и цитоплазмы, в которой происходит синтез тех или иных белков на основе программы, записанной в ДНК и передающейся в цитоплазму с информационной РНК.
Закономерности наследственности имеют огромное значение для практики сельского х-ва и медицины. На них основываются выведение новых и совершенствование существующих сортов растений и пород животных. Изучение закономерностей наследственности привело к научному обоснованию применявшихся ранее эмпирически методов селекции и к разработке новых приёмов (экспериментальный мутагенез, гетерозис, полиплоидия и др.).
Генетика человека
Генетика человека - это отрасль генетики, тесно связанная с антропологией и медициной. Генетика человека условно подразделяют на антропогенетику, изучающую наследственность и изменчивость нормальных признаков человеческого организма, и генетику медицинскую, которая изучает его наследственную патологию (болезни, дефекты, уродства' и др.). Генетика человека связана также с эволюционной теорией, так как исследует конкретные механизмы эволюции человека и его место в природе, с психологией, философией, социологией. Из направлений Генетика человека интенсивно развиваются цитогенетика, биохимическая генетика, иммуногенетика, генетика высшей нервной деятельности, физиологическая генетика.
В Генетике человека применяют генеалогический метод, который состоит в анализе распределения в семьях (точнее, в родословных) лиц, обладающих данным признаком (или аномалией) и не обладающих им, что раскрывает тип наследования, частоту и интенсивность проявления признака и т. д. При анализе семейных данных получают также цифры эмпирического риска, т. е. вероятность обладания признаком в зависимости от степени родства с его носителем. Генеалогическим методом уже показано, что более 1800 морфологических, биохимических и др. признаков человека наследуется по законам Менделя. Например, тёмная окраска кожи и волос доминирует над светлой; пониженная активность или отсутствие некоторых ферментов определяется рецессивными генами, а рост, вес, уровень интеллекта и ряд др. признаков — «полимерными» генами, т. е. системами из мн. генов. Мн. признаки и болезни человека, наследующиеся сцеплено с полом, обусловлены генами, локализованными в Х- или У- хромосоме. Таких генов известно около 120. К ним относятся гены гемофилии А и В, недостаточности фермента глюко-зо-6-фосфат-дегидрогеназ
Наследственность и среда
Гены проявляют свои функции не в пустоте, а в такой высокоорганизованной системе, как клетка, которая сама находится в определенном окружении – среди других клеток или во внешней среде. Каков бы ни был генотип, его свойства проявляются лишь в той степени, в какой это позволяют окружающие условия.
Растение, выращиваемое в темноте, остается белым и хилым; оно неспособно извлекать из углекислого газа энергию, необходимую для обмена веществ, даже в том случае, когда все его клетки содержат генетическую информацию. необходимую для развития хлоропластов, а также синтеза и деятельности хлорофилла. В равной мере генетические потенции, определяющие цвет глаз, проявляются только в особых условиях, которые создаются в клетках радужной оболочки; эти потенции реализуются при условии, если предварительно благодаря действию многочисленных генов сам глаз достаточно развился.
Наконец, фенотип организма представляет собой результат взаимодействий между генотипом и средой в каждый данный момент его жизни и на каждом этапе его индивидуального развития.
Действия среды могут быть отнесены к двум типам, хотя в реальной обстановке они часто налагаются друг на друга. С одной стороны, это сильные воздействия, приводящие к полному или частичному подавлению выражения генетических потенций с другой – слабые влияния, выражающиеся лишь в небольших изменениях степени их выражения. Первый тип воздействий зависит от случайных обстоятельств, второй обычен и неразрывно связан с функционированием живой материи.
Индивидуальное развитие высшего организма начинается со стадии зиготы. Наследственные потенции, получаемые им от родителей, проявляются лишь постепенно, в ходе длительного и сложного процесса развития и начиная с первых делений дробления яйца, в их реализации принимает участие среда.
Для генов будущего организма исходной средой служит цитоплазма яйца, происходящего от материнского организма и воплощающего в себе клеточную непрерывность. Этого может оказаться достаточно, чтобы ориентировать развитие эмбриона в направлении, не совпадающем с его собственным генотипом.
Сравнение внутри парных различий между однояйцовыми и разнояйцовыми близнецами позволяет судить об относительном значении наследственности и среды в определении свойств человеческого организма. В близнецовых исследованиях особенно важен показатель конкордантности, выражающий (в % ) вероятность обладания данным признаком одним из членов пары ОБ или РБ, если его имеет другой член пары. Если признак детерминирован преимущественно наследственными факторами, то процент конкордантности намного выше у ОБ, чем у РБ. Например, конкордантность по группам крови, которые детерминированы только генетически, у ОБ равна 100%. При шизофрении конкордантность у ОБ достигает 67%, в то время как у РБ — 12,1%; при врождённом слабоумии (олигофрении) — 94,5% и 42,6% соответственно. Подобные сравнения проведены в отношении ряда заболеваний. Таким образом, исследования близнецов показывают, что вклад наследственности и среды в развитие самых разнообразных признаков различен и признаки развиваются в результате взаимодействия генотипа и внешней среды. Одни признаки обусловлены преим. генотипом, при формировании др. признаков генотип выступает в качестве предрасполагающего фактора (или фактора, лимитирующего норму реакции организма на действия внешней среды).
Лечение и профилактика наследственных болезней
Успехи в развитии генетики человека сделали возможными предупреждение и лечение наследственных заболеваний. Один из эффективных методов их предупреждения — медико-генетическое консультирование с предсказанием риска появления больного в потомстве лиц, страдающих данным заболеванием или имеющих больного родственника. Достижения биохимической генетике человека раскрыли первопричину (молекулярный механизм) множество наследственно обусловленных дефектов, аномалий обмена веществ, что способствовало разработке методов экспресс -диагностики, позволяющих быстро и рано выявлять больных, и лечения мн. прежде неизлечимых наследств, болезней. Чаще всего лечение состоит во введении в организм веществ, не образующихся в нём вследствие генетического дефекта, или в составлении специальных диет, из которых устранены вещества, оказывающие токсическое действие на организм в результате наследственно обусловленной неспособности к их расщеплению. Многие генетические дефекты исправляются с помощью своевременного хирургического вмешательства или педагогической коррекции. Практические мероприятия, направленные на поддержание наследственного здоровья человека, на охрану генофонда человечества, осуществляются через систему медико-генетических консультаций. Основная цель медико-генетического консультирования — информировать заинтересованных лиц о вероятности риска появления в потомстве больных. К медико-генетическим мероприятиям относится также пропаганда генетических знаний среди населения, т. к. это способствует более ответственному подходу к деторождению. Медико-генетическая консультация воздерживается от мер принудительного или поощрительного характера в вопросах деторождения или вступления в брак, принимая на себя лишь функцию информации. Большое значение имеет система мер, направленных на создание наилучших условий для проявления положит, наследств, задатков и предотвращение вредных воздействий среды на наследственность человека.
Генетика человека представляет собой естественнонаучную основу борьбы с расизмом, убедительно показывая, что расы — это формы адаптации человека к конкретным условиям среды (климатическим и иным), что они отличаются друг от друга не наличием «хороших» или «плохих» генов, а частотой распространения обычных генов, свойственных всем расам. Генетика человека показывает, что все расы равноценны (но не одинаковы) с биологической точки
зрения и обладают равными возможностями для развития, определяемого не генетическими а социально-историческими условиями. Констатация биологических наследственных различий
между отдельными людьми или расами не может служить основанием для каких-либо выводов морального, юридического или социального порядка, ущемляющих права этих людей или рас . Данные генетики человека показали, что довольно часты гены, определяющие развитие разнообразных уродств и наследственных заболеваний: наследственных болезней обмена, психических и др. Уменьшению вероятности появления в семьях наследственно больных детей призваны способствовать медико-генетические консультации. Ранняя диагностика наследственных заболеваний позволяет применить необходимые методы лечения. Существенно важен учёт наследственности в реакции разных людей на лекарства и другие химические вещества, а также
в иммунология, реакциях. Бесспорна роль молекулярно-генетических механизмов в этиологии злокачественных опухолей.
Явления наследственности предстают в разной форме в зависимости от уровня жизни, на котором они изучаются (молекула, клетка, организм, популяция). Но в конечном счёте наследственность обеспечивается самовоспроизведением материальных единиц наследственности (генов и цитоплазматических элементов), молекулярная структура которых известна. Закономерный матричный характер их ауторепродукции нарушается и мутациями отдельных генов или перестройками генетических систем в целом. Всякое изменение в ауторепродуцирующемся элементе наследуется константно.
Гены индивидуальности
Одно из чудес , которое мы наблюдаем ежедневно и ежечасно, - неповторимая индивидуальность каждого человека, живущего на Земле. Ученым долгое время не удавалось найти ключ к этой загадке.
Известно, что вся информация о строении и развитии живого организма “записана” в его геноме- совокупности генов. Считается, что внутри одного вида геномные различия очень незначительны. ” Например, ген окраски глаз у человека отличается от гена окраски глаз у кролика, однако у разных людей этот ген устроен одинаково и состоит из одинаковых последовательностей ДНК.
Существует огромное разнообразие белков, из которых построены живые организмы и удивительное многообразие генов, кодирующих эти белки. В геноме каждого человека есть какие-то области, определяющие его индивидуальность. Некоторые гены человека отличаются от генов крысы всего несколько нуклеотидами-знаками генетического кода. Другие гены у них разные, но одинаковые у двух людей. Изменчивость, связанная с существованием генов, подобных генам группы крови у человека, также не объясняет огромного разнообразия природных белков.
В 1985 г. были обнаружены в геноме человека особые сверх изменчивые участки-мини-сателлиты. Эти участки ДНК оказались индивидуальными у каждого человека и с их помощью удалось получить “портрет “ его ДНК т. е. определенных генов.
Этот “портрет”- сложное сочетание темных и светлых полос, похожее на слегка размытый спектр, или на клавиатуру из темных и светлых клавиш разной толщины. Это сочетание называют ДНК-отпечатками (по аналогии с отпечатками пальцев) или “ДНК-профиль”
На основе сверх изменчивых последовательностей ДНК были сконструированы специальные маркеры, или зонды ДНК.” Маркеры, помеченные радиоактивным изотопом, добавляют к обработанным специальным образом ДНК, с которыми первые находят сходные сверх изменчивые участки на ДНК и присоединяются к ним. Эти участки становятся радиоактивными , так что их можно выявить с помощью радиоавтографии. У каждого человека распределение таких
мест индивидуально. Там, где маркеры присоединились к большому числу сверх изменчивых участков на ДНК (много радиоавтографических сигналов)- это широкая темная полоса. Где мало мест присоединения,- узкая темная полоса. Где их совсем нет,- светлая полоса.
Итак , ученые обнаружили , что геном человека буквально “насыщен” сверх изменчивыми последовательностями ДНК. Стали обнаруживаться неуловимые прежде индивидуальные последовательности ДНК.
После разгадки индивидуальности человека, встал вопрос: обладают ли такой же индивидуальностью другие организмы? Существуют ли у них сверх изменчивые последовательности ДНК? Ученые должны были найти универсальный маркер, одинаково пригодный как для бактерий, так и для человека. Им оказался бактериофаг (вирус бактерий). Это открытие было чрезвычайно важно для работы генетиков и селекционеров.
Выяснилось, что с помощью отпечатков ДНК можно провести идентификацию личности гораздо более успешную, чем это позволяли сделать традиционные методы отпечатков пальцев и анализ крови. Вероятность ошибки - одна на несколько миллионов. Новым открытием сразу же воспользовались криминалисты, которые быстро и эффективно применили его на практике.
С помощью ДНК-отпечатков можно расследовать преступления не только настоящего времени, но и глубокого прошлого.
Идентификацию материнства можно проводить по отпечаткам ДНК матери и ребенка в отсутствии отца, и наоборот, для установления отцовства достаточно ДНК-отпечатков отца и ребенка. При наличии же материала матери, отца и ребенка ДНК-отпечатки выглядят не сложнее, чем картинка из школьного учебника: каждая полоса на ДНК-отпечатке ребенка может быть “адресована” либо отцу, либо матери”.
Наиболее интересны прикладные аспекты генетической дактилоскопии. Встает вопрос паспортизации по отпечаткам ДНК преступников - рецидивистов, введения в картотеки следственных органов данных об отпечатках ДНК наряду с описанием внешности, особых примет, отпечатков пальцев
Заключение
Проанализировав материал и изучив все вопросы можно сказать: все что мы знаем сегодня о механизмах наследственности, действующих на всех уровнях организации живого (особь, клетка, субклеточная структура, молекула ), удалось установить благодаря теоретическому и техническому вкладу многих дисциплин - биохимии, кристаллографии, физиологии, бактериологии, вирусологии, цитологии ... и, наконец, генетики. В этой кооперации генетика выступала в качестве ведущего начала исследований, унифицировавшего получаемые результаты. Генетическое истолкование биологических явлений имеет в сущности объединяющее значение, как это хорошо выражено в ставшем уже классическим афоризме Ж. Моно: “Все, что верно для бактерии, верно и для слона”. На современном этапе биологических знаний вполне обоснованно считать, что все свойства организмов, включая человека, могут быть всецело объяснены (если уже не объяснены) особенностями их генов и тех белков, которые ими кодируются. Поэтому, к какой бы отрасли биологии ни относилось изучаемое явление - будь то эмбриология, физиология, патология или иммунология, теперь уже невозможно не учитывать его генетические основы. За каждым явлением скрывается его строгая детерминация- группа работающих генов и белков, осуществляющих свои функции.
Эти факты и представляют собой в совокупности солидный вклад генетики в понимание первичных механизмов жизни. Но значение генетики этим не исчерпывается, оно связано также с внутренними особенностями генетического метода.
Генетик имеет дело с мутациями, которые служат для него рабочим материалом. Действительно, мутация, выражающаяся в наследственном изменении какого-то свойства, обнаруживает известную долю генетического материала организма, о существовании и функции которой иначе было бы трудно догадаться. Генетический анализ (состоящий в прослеживании передачи какого-либо признака при половом размножении) позволяет установить число генов, ответственных за изучаемый признак и их локализацию. Если признак представляет собой факт эмпирический, сложный (поскольку он соответствует внешним выражениям сложного взаимодействия элементарных явлений) и к тому же изменяющийся в зависимости от условий Среды и многочисленных микро-факторов, ускользающих от контроля экспериментатора, то генетика напротив, факт точный, конкретный и стабильный. Совершенно очевидно, что стремление разложить данное явление на его генетические компоненты всегда способствует становлению метода ясного логичного анализа.
Кроме того, использование данных генетики - единственный метод, позволяющий биологу вести строго научное экспериментальное исследование и с уверенностью сопоставлять полученные результаты. Таким образом, генетика дает нам одновременно теоретически рациональный подход, вносящий ясность в понимание исследуемых явлений, и точный экспериментальный метод. Они, безусловно, сохранят свое значение до тех пор, пока не будут удовлетворительно объяснены все свойства живых организмов.
Список используемой литературы
1.С. Х. Карпенков “Концепципи современного естествознания”,М.,1997 г.
2. В. А. Орехова, Т. А. Лашковская, М. П. Шейбак “Медицинская геенетика”,Минск, 1997 г.
3. А. А. Богданов, Б. М. Медников “Власть над геном”, Москва “Просвещение” 1989 г.
4. А. А. Каменский, Н. А. Соколова, С. А. Титов “Биология”, Москва ,1997 г.
5. Биологический энциклопедический словарь, Москва, 1989 г.
6. Маниатис Т., Методы генетической инженерии, М., 1984;
Информация о работе Биологическая наследственность. Генетический код. Геном человека