Автор работы: Пользователь скрыл имя, 16 Декабря 2011 в 09:15, реферат
Одними из самых загадочных объектов во вселенной являются черные дыры. Я не случайно выбрал эту тему. Черные дыры являются одновременно очень простыми и очень сложными в понимании. Черная дыра является порождением тяготения. Их тяжело изучать, т.к. они в данный момент времени недосягаемы для нас, но по расчетам математиков о них можно судить. Даже изучение этих объектов на расстоянии давалось с трудом (пока на орбиту не взошли рентгеновские обсерватории).
I Введение.
II Основная часть.
Черная дыра – как последняя стадия эволюции звезд.
Обнаружение черных дыр.
Математическое описание.
Тесные двойные системы.
Гравитационные волны.
Разрушение звезд.
Черные дыры нагревают межгалактическое пространство.
Черная дыра может быть и “белой”.
Дыра во времени.
Небесная механика черных дыр.
Суперрадиация.
III Заключительная часть.
Заключение.
Использованные источники.
Ответственность за разработку конструкций и операции на микроинтерферометрах лежат на Калифорнийском технологическом институте. Но существует и международное научное сообщество, которое формулирует задачи, проводит исследовательские работы. В нем участвуют 250 ученых и инженеров из 25 институтов. Большую роль в этом сообществе играют профессор В.Б. Брагинский и его коллеги из Московского государственного университета. Подвес зеркал и тепловые флуктуации в нем, избыточные шумы, квантовые ограничения и квантовые невозмущающие измерения - это проблемы, которые решает группа из МГУ. А задача Калифорнийского технологического института - использовать все разработки МГУ, чтобы превратить их в технологически надежные устройства, которыми будут оборудованы антенны. В содружестве научные группы разрабатывают различные узлы и элементы для LIGO II, чтобы потом, в окончательном варианте, использовать их в больших гравитационных антеннах.
Принципиальная схема лазерной гравитационной антенны
Первое, на что
можно надеяться, - это обнаружение
всплесков гравитационного
Когда всплеск
гравитационного излучения
Когда две черные дыры сливаются, мы имеем возможность наблюдать скрутки пространства-времени, динамику скруток. Черные дыры "сделаны" не из обычной материи, а из скрученного пространства-времени. Интересно отметить, что черная дыра при своем вращении увлекает за собой пространство примерно так же, как торнадо из-за вращения закручивает воздух.
Ученые хотят узнать, что будет происходить, когда две черные дыры, вращающиеся каждая вокруг своей оси и вращающиеся обе вокруг общего центра масс, будут сливаться. Форма всплеска гравитационного излучения принесет информацию об этом процессе. Естественно стремление специалистов построить теоретическую модель процесса слияния двух черных дыр и с помощью суперкомпьютера рассчитать форму гравитационного всплеска, рожденного в таком процессе. Решение этой задачи потребует использования самых мощных компьютеров, которые когда-либо применялись на нашей планете.
Примерно через 10 лет поле поисков гравитационного излучения расширится: вступит в строй проект LISA. Пробный запуск элементов антенны намечен на 2006 г., а окончательный - на 2010-й. Антенна будет расположена на той же орбите вокруг Солнца, что и Земля. В ней, как и в антеннах LIGO и VIRGO, будут использованы зеркала (центральный элемент в спутниках) и лазерный интерферометр для измерения их малых относительных колебаний (амплитуда 10-9 см при расстоянии между зеркалами в 5 млн. км). В отличие от наземных лазерных антенн в LISA диапазон частот гравитационного излучения составляет 10-4-10-1 Гц. Соответственно и программа поисков нацелена на другие источники. Наземные антенны и антенна на околоземной орбите (относительно низкочастотная) позволят начать изучение того, что происходило во Вселенной в первую секунду ее существования. Можно предсказать, что в ближайшие 20-30 лет с помощью этих антенн мы сможем узнать "темную" сторону устройства нашей Вселенной, в которой почти не было электромагнитного излучения, а вся информация была связана с излучением гравитационных волн.
Разрушение звезд.
Для активных галактических ядер пределы на темп аккреции составляют 10-2 - 102M๏/год. Встает вопрос, какой именно механизм способен его обеспечить для гигантской черной дыры. Достаточно эффективна, например, потеря массы пролетающими рядом звездами. Современные модели галактических ядер предполагают массивную черную дыру, окруженную плотным звездным облаком. Из-за диффузии орбит некоторые звезды залетают достаточно глубоко в гравитационных потенциал черной дыры по сильно вытянутым орбитам. Звезды могут разрушаться либо под действием приливных сил, либо за счет столкновений с другими звездами. Радиус столкновений Rcoll≈7*1010M/ M๏ см для солнцеподобных звезд определяется как расстояние, на котором скорость свободного падения сравнивается со скоростью убегания на поверхности звезды V*(порядка 500км/с для нормальных звезд); при столкновении двух звезд внутри Rcoll они частично или полностью разрушаются.
Кроме того, звезды, попавшие внутрь критического приливного радиуса
RT≈6 * 1013(M/(108M๏))1/3 см. для солнцеподобных звезд, будут неизбежно разрушены приливными силами. β - является фактором разрушения, величина которого определяет судьбу звезды. В случае столкновения величина β=Vrel/ V* играет ту же роль, что и фактор β=RT/RP в случае разрушения приливными силами (где RP - высота периастра). Как только выполняется условие β≤1, звезда разрушается, а когда β≤5, звезды сильно деформируются при столкновении. Ученые установили, что звезда, попавшая внутрь сферы приливного радиуса, сдавливается приливными силами в короткоживущую очень горячую блиноподобную конфигурацию. Рисунок показывает процесс деформации звезды. Слева показана деформация звезды в плоскости ее орбиты, а справа - в перпендикулярном направлении. От a до d приливные силы слабы, и звезда остается почти сферической. В точке e звезда проходит приливной радиус и становится сигарообразной. От e до g становится все более важным "эффект катка", и звезда уплощается в орбитальной плоскости до формы изогнутого "блина". Когда звезда покидает сферу приливного радиуса, пролетев вблизи черной дыры, она вновь расширяется, вновь становится сигарообразной. Чуть позже звезда наконец разваливается на куски.
Если же звезда пролетает достаточно близко от черной дыры (например, β≤10), ее центральная температура за долю секунды возрастает до миллиарда градусов, сильно увеличивается скорость термоядерных реакций, такие элементы, как гелий, азот и кислород мгновенно переходят в более тяжелые за счет захвата протонов или альфа-частиц. В "звездном блине" происходит термоядерный взрыв, давая в результате "случайную сверхновую". Этот взрыв имеет далеко идущие последствия: порядка 50% звездных "обломков" выбрасываются (за счет энергии взрыва) с огромной скоростью прочь от черной дыры горячим газовым облаком, остальное вещество падает на черную дыру, вызывая вспышку излучения. Как и сверхновые, "звездные блины" являются теми тиглями, в которых рождаются тяжелые элементы, потом рассеиваемые по всей галактике. Таким образом, наблюдения высокоскоростных облаком и необычно высокого обилия редких изотопов в окрестностях галактических ядер могло бы послужить аргументом в пользу наличия там черных дыр.
Разрушение звезды приливными силами вблизи черной дыры.
Сопровождаемое взрывом или нет, приливное разрушение звезды должно вызывать вспышку излучения на шкале нескольких месяцев (столько требуется веществу звезды, чтобы полностью исчезнуть в черной дыре). Для описания эволюции звезды нами была разработана приближенная "аффинная модель", предполагающая эллипсоидальность слоев постоянной плотности. Многие астрофизики сомневались в предсказаниях такой модели до тех пор, пока по всему миру не были проведены детальные трехмерные расчеты, подтвердившие ее основные свойства и предсказания (хотя формирование ударных волн и может немного понизить центральную плотность "блина").
В промежутке между 1991 и 1993 годами ультрафиолетовая светимость ядра эллиптической галактики NGC 4552 возросла до 106L๏ на шкале времени, согласующейся с предсказаниями теории приливного разрушения звезды, хотя светимость и оказалась примерно на 4 порядка ниже, чем ожидалось, что может свидетельствовать о неполном разрушении звезды.
Черные дыры нагревают межгалактическое пространство.
Галактические кластеры - наиболее крупные объекты Вселенной, состоящие из тысяч галактик, таких, как наш Млечный путь, образовались из гигантских облаков первобытного газа. После этого остатки горячего газа заполнили пространство между галактиками. Теоретически, газ должен охлаждаться с течением времени, но практически этого не происходит.
Сейчас исследователи утверждают, что могут раскрыть загадку, которая возникла уже более трех десятилетий назад. Согласно данным, опубликованным в журнале Nature, ученые обнаружили, что мощные потоки энергии, испускаемые сверхмассивными черными дырами, нагревают газ в межгалактическом пространстве.
Исследователи Кристин Кейзер из университета в Саутгемптоне и Маркус Брюген из международного университета в Бремене, Германия, использовали суперкомпьютер для моделирования процессов, происходящих с межгалактическим газом.
Наличие газа между галактиками определяют по испускаемым ими рентгеновским лучам. Но такое излучение должно уводить тепло и вызывать охлаждение газа, который в течение миллиардов лет конденсировался и образовывал галактики и звезды. Однако астрономы обнаружили, что по прошествии нескольких миллиардов лет со времени рождения кластеров газ в них так и не остыл.
Внутри галактических кластеров существует ряд галактик, связанных сверхмассивными черными дырами, каждая из которых эквивалентна по массе миллиардам звезд. Некоторые из черных дыр активно поглощают вещество. Они забирают все, что к ним приближается, а захваченное вещество, притягиваясь, может ускоряться до скорости света.
При такой скорости материя сильно разогревается и испускает рентгеновские лучи, по которым астрономы судят о наличии черных дыр. Рентгеновские лучи и другое электромагнитное излучение выбрасывается за пределы галактики в двух противоположных направлениях вдоль оси ее вращения. Однако другие галактики с черными дырами, включая наш Млечный путь, ведут себя не так - они не испускают радиацию, и причина этого остается загадкой.
Когда газ в межгалактическом пространстве начинает остывать, он становится более стабильным и в итоге втягивается в галактики под действием гравитации. В конце концов, он остывает до такой температуры, что поглощается черной дырой. Затем газ снова нагревается, закручиваясь внутрь спирали, и его энергия выходит обратно в межгалактическое пространство в виде мощных потоков.
Такие энергетические потоки могут слиться в единый взрыв, эквивалентный 10 миллиардам сверхновых звезд, и заново нагреть газ внутри галактического кластера. По словам ученых, черные дыры в активных галактиках ведут себя как космические термостаты. Горячий газ внутри кластера остывает и устремляется к центру притяжения. Затем черная дыра поглощает газ, выделяя при этом процессе энергию, которая снова действует на межгалактический газ. Газ нагревается и движется назад от центра кластера. Затем весь процесс повторяется.
Черная дыра может быть и “белой”.
Долгое время черные дыры считались воплощением тьмы, объектами, которые в вакууме, в отсутствии поглощения материи, ничего не излучают. Однако в 1974 году известный английский теоретик Стивен Хокинг показал, что черным дырам можно приписать температуру, и, следовательно, они должны излучать.
Согласно представлениям
квантовой механики, вакуум – не
пустота, а некая «пена пространства-
Именно квантовые флуктуации определяют процессы излучения черных дыр. Если пара частиц, обладающих энергиями E и -E (полная энергия пары равна нулю), возникает в окрестности сферы Шварцшильда, дальнейшая судьба частиц будет различной. Они могут аннигилировать почти сразу же или вместе уйти под горизонт событий. При этом состояние черной дыры не изменится. Но если под горизонт уйдет только одна частица, наблюдатель зарегистрирует другую, и ему будет казаться, что ее породила черная дыра. При этом черная дыра, поглотившая частицу с энергией -E, уменьшит свою энергию, а с энергией E – увеличит.