Автор работы: Пользователь скрыл имя, 08 Ноября 2012 в 12:21, контрольная работа
На основании последних научных достижений современной биологической науки дано следующее определение жизни: «Жизнь – это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров – белков и нуклеиновых кислот» (И. И. Мечников).
Достижения биологии в современных вариантах систематики жизни
На основании последних научных достижений современной биологической науки дано следующее определение жизни: «Жизнь – это открытые саморегулирующиеся и самовоспроизводящиеся системы совокупностей живых организмов, построенные из сложных биологических полимеров – белков и нуклеиновых кислот» (И. И. Мечников).
Достижения биологии последнего
времени привели к
Живая природа устроила себя
гениально просто и мудро. У нее
есть единственная самовоспроизводящая
молекула ДНК, на которой записана программа
жизни, а конкретнее, весь процесс
синтеза, структура и функция
белков как основных элементов жизни.
Кроме сохранения программы жизни
молекула ДНК выполняет еще одну
важнейшую функцию – ее самовоспроизведение,
копирование создают
Современные биотехнологии
Современная биология – область стремительных и фантастических преобразований в биотехнологии.
Биотехнологии основаны на использовании живых организмов и биологических процессов в промышленном производстве. На их базе освоено массовое производство искусственных белков, питательных и многих других веществ, по многим свойствам превосходящих продукты естественного происхождения. Успешно развивается микробиологический синтез ферментов, витаминов, аминокислот, антибиотиков и т.п. С применением генных технологий и естественных биоорганических материалов синтезируются биологически активные вещества — гормональные препараты и соединения, стимулирующие иммунитет.
Современная биотехнология позволяет превратить отходы древесины, соломы и другое растительное сырье в ценные питательные белки. Она включает процесс гидролизации промежуточного продукта — целлюлозы — и нейтрализацию образующейся глюкозы с введением солей. Полученный раствор глюкозы представляет собой питательный субстрат микроорганизмов – дрожжевых грибков. В результате жизнедеятельности микроорганизмов образуется светло-коричневый порошок – высококачественный пищевой продукт, содержащий около 50% белка-сырца и различные витамины. Питательной средой для дрожжевых грибков могут служить и такие содержащие сахар растворы, как паточная барда и сульфитный щелок, образующийся при производстве целлюлозы.
Некоторые виды грибков превращают
нефть, мазут и природный газ
в пищевую биомассу, богатую белками.
Так, из 100 т неочищенного мазута можно
получить 10 т дрожжевой биомассы,
содержащей 5 т чистого белка и
90 т дизельного топлива. Столько
же дрожжей производится из 50 т сухой
древесины или 30 тыс. м3 природного газа.
Для производства данного количества
белка потребовалось бы стадо
коров из 10 000 голов, а для их содержания
нужны огромные площади пахотных
земель. Промышленное производство белков
полностью автоматизировано, и дрожжевые
культуры растут в тысячи раз быстрее,
чем крупный рогатый скот. Одна
тонна пищевых дрожжей
Практическое применение достижений современной биологии уже в настоящее время позволяет получать промышленным путем значительные количества биологически активных веществ.
Биотехнология, по-видимому, уже в ближайшие десятилетия займет лидирующее положение и, возможно, определит лицо цивилизации XXI века.
Генные технологии
Генетика – важнейшая область современной биологии.
На основе генной инженерии родилась современная биотехнология. В мире сейчас колоссальное количество фирм, занимающихся бизнесом в этой области. Они делают все: от лекарств, антител, гормонов, пищевых белков до технических вещей – сверхчувствительных датчиков (биосенсоров), компьютерных микросхем, хитиновых диффузоров для хороших акустических систем. Генно-инженерная продукция завоевывает мир, она безопасна в экологическом отношении.
На начальной стадии развития генных технологий был получен ряд биологически активных соединений — инсулин, интерферон и др. Современные генные технологии объединяют химию нуклеиновых кислот и белков, микробиологию, генетику, биохимию и открывают новые пути решения многих проблем биотехнологии, медицины и сельского хозяйства.
Генные технологии основаны на методах молекулярной биологии и генетики, связанных с целенаправленным конструированием новых, не существующих в природе сочетаний генов. Основная операция генной технологии заключается в извлечении из клеток организма гена, кодирующего нужный продукт, или группы генов и соединение их с молекулами ДНК, способными размножаться в клетках другого организма.
ДНК, хранящаяся и работающая в клеточном ядре, воспроизводит не только саму себя. В нужный момент определенные участки ДНК – гены – воспроизводят свои копии в виде химически подобного полимера – РНК, рибонуклеиновой кислоты, которые в свою очередь служат матрицами для производства множества необходимых организму белков. Именно белки определяют все признаки живых организмов. Основная цепь событий на молекулярном уровне:
ДНК -> РНК -> белок
В этой строчке заключена так называемая центральная догма молекулярной биологии.
Генные технологии привели к
разработке современных методов
анализа генов и геномов, а
они, в свою очередь, — к синтезу,
т.е. к конструированию новых, генетически
модифицированных микроорганизмов. К
настоящему времени установлены
нуклеотидные последовательности разных
микроорганизмов, включая промышленные
штаммы, и те, которые нужны для
исследования принципов организации
геномов и для понимания
Клонирование эукариотных (ядерных) генов в микробах и есть тот принципиальный метод, который привел к бурному развитию микробиологии. Фрагменты геномов животных и растений для их анализа клонируют именно в микроорганизмах. Для этого в качестве молекулярных векторов, переносчиков генов, используют искусственно созданные плазмиды, а также множество других молекулярных образований для выделения и клонирования.
С помощью молекулярных проб (фрагментов ДНК с определенной последовательностью нуклеотидов) можно определять, скажем, заражена ли донорская кровь вирусом СПИДа. А генные технологии для идентификации некоторых микробов позволяют следить за их распространением, например, внутри больницы или при эпидемиях.
Генные технологии производства вакцин развиваются в двух основных направлениях. Первое — улучшение уже существующих вакцин и создание комбинированной вакцины, т.е. состоящей из нескольких вакцин. Второе направление — получение вакцин против болезней: СПИДа, малярии, язвенной болезни желудка и др.
За последние годы генные технологии значительно улучшили эффективность традиционных штаммов-продуцентов. Например, у грибного штамма-продуцента антибиотика цефалоспорина увеличили число генов, кодирующих экспандазу, активность, которой задает скорость синтеза цефалоспорина. В итоге выработка антибиотика возросла на 15—40%.
Проводится целенаправленная работа по генетической модификации свойств микробов, используемых в производстве хлеба, сыроварении, молочной промышленности, пивоварении и виноделии, чтобы увеличить устойчивость производственных штаммов, повысить их конкурентоспособность по отношению к вредным бактериям и улучшить качество конечного продукта.
Генетически модифицированные микробы приносят пользу в борьбе с вредными вирусами и микробами и насекомыми. Например:
- устойчивость растений
к гербицидам, что важно для
борьбы с сорняками,
- устойчивость растений
к насекомым-вредителям. Разработка
белка дельта-эндотоксину,
- устойчивость растений
к вирусным заболеваниям. Для
этого в геном растительной
клетки вводятся гены, блокирующие
размножения вирусных частиц
в растениях, например
Кроме генов в клетках живых организмов, в природе существуют также независимые гены. Они называются вирусами, если могут вызвать инфекцию. Оказалось, что вирус – это не что иное, как упакованный в белковую оболочку генетический материал. Оболочка – чисто механическое приспособление, как бы шприц, для того, чтобы упаковать, а затем впрыснуть гены, и только гены, в клетку-хозяина и отвалиться. Затем вирусные гены в клетке начинают репродуцировать на себе свои РНК и свои белки. Все это переполняет клетку, она лопается, гибнет, а вирус в тысячах копий освобождается и заражает другие клетки.
Болезнь, а иногда даже смерть вызывают чужеродные, вирусные белки. Если вирус «хороший», человек не умирает, но может болеть всю жизнь. Классический пример – герпес, вирус которого присутствует в организме 90% людей. Это самый приспособленный вирус, обычно заражающий человека в детском возрасте и живущий в нем постоянно.
Таким образом, вирусы – это, в сущности, изобретенное эволюцией биологическое оружие: шприц, наполненный генетическим материалом.
Теперь пример уже из современной биотехнологии, пример операции с зародышевыми клетками высших животных ради благородных целей. Человечество испытывает трудности с интерфероном – важным белком, обладающим противораковой и противовирусной активностью. Интерферон вырабатывается животным организмом, в том числе и человеческим. Чужой, не человеческий, интерферон для лечения людей брать нельзя, он отторгается организмом или малоэффективен. Человек же вырабатывает слишком мало интерферона для его выделения с фармакологическими целями. Поэтому было сделано следующее. Ген человеческого интерферона был введен в бактерию, которая затем размножалась и в больших количествах нарабатывала человеческий интерферон в соответствии с сидящим в ней человеческим геном. Сейчас эта, уже стандартная техника применяется во всем мире. Точно так же, и уже довольно давно, производится генно-инженерный инсулин. С бактериями, однако, возникает много сложностей при очистке нужного белка от бактериальных примесей. Поэтому начинают от них отказываться, разрабатывая методы введения нужных генов в высшие организмы. Это труднее, но дает колоссальные преимущества. Сейчас, в частности, уже широко распространено молочное производство нужных белков с использованием свиней и коз. Принцип здесь, очень коротко и упрощенно, таков. Из животного извлекают яйцеклетки и вставляют в их генетический аппарат, под контроль генов белков молока животного, чужеродные гены, определяющие выработку нужных белков: интерферона, или необходимых человеку антител, или специальных пищевых белков. Потом яйцеклетки оплодотворяют и возвращают в организм. Часть потомства начинает давать молоко, содержащее необходимый белок, а из молока выделить его уже достаточно просто. Получается значительно дешевле, безопаснее и чище.
Таким же путем были выведены коровы, дающие «женское» молоко (коровье молоко с необходимыми человеческими белками), пригодное для искусственного вскармливания человеческих младенцев. А это сейчас довольно серьезная проблема.
В целом можно сказать, что в практическом плане человечество достигло довольно опасного рубежа. Научились воздействовать на генетический аппарат, в том числе и высших организмов. Научились направленному, избирательному генному воздействию, продуцированию так называемых трансгенных организмов – организмов, несущих любые чужеродные гены. ДНК – это вещество, с которым можно манипулировать. В последние два-три десятилетия возникли методы, с помощью которых можно разрезать ДНК в нужных местах и склеивать с любым другим кусочком ДНК. Более того, могут вырезать и вставлять не только определенные готовые гены, но и рекомбинанты – комбинации разных, в том числе и искусственно созданных генов. Это направление получило название генной инженерии. Человек стал генным инженером. В его руках, в руках не столь уже совершенного в интеллектуальном отношении существа, появились безграничные, гигантские возможности - как у Господа Бога.
Современная цитология
Новые методы, особенно электронная
микроскопия, применение радиоактивных
изотопов и высокоскоростного
Цитологические методы используются,
в частности, в селекции растений
для определения хромосомного состава
растительных клеток. Такие исследования
оказывают большую помощь в планировании
экспериментальных скрещиваний
и оценке полученных результатов. Аналогичный
цитологический анализ проводится и
на клетках человека: он позволяет
выявить некоторые
Однако самое важное применение цитологических методов в медицине – это диагностика злокачественных новообразований. В раковых клетках, особенно в их ядрах, возникают специфические изменения. Злокачественные образования – это не что иное, как отклонения в нормальном процессе развития вследствие выхода из-под контроля управляющих развитием систем, в первую очередь генетических. Цитология является достаточно простым и высокоинформативным методом скрининговой диагностики различных проявлений папилломавируса. Это исследование проводится как у мужчин, так и у женщин.
Информация о работе Достижения биологии в современных вариантах систематики жизни