Фундаментальные взаимодействия в природе

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 14:26, реферат

Описание

В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций, и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к фундаментальным взаимодействиям.

Работа состоит из  1 файл

Фундаментальные взаимодействия.doc

— 111.50 Кб (Скачать документ)

                               Введение

  В своей повседневной жизни человек сталкивается с множеством сил, действующих на тела: сила ветра или потока воды; давление воздуха; мощный выброс взрывающихся химических веществ; мускульная сила человека; вес предметов; давление квантов света; притяжение и отталкивание электрических зарядов; сейсмические волны, вызывающие подчас катастрофические разрушения; вулканические извержения, приводившие к гибели цивилизаций, и т.д. Одни силы действуют непосредственно при контакте с телом, другие, например гравитация, действуют на расстоянии, через пространство. Но, как выяснилось в результате развития естествознания, несмотря на столь большое разнообразие, все действующие в природе силы можно свести к фундаментальным взаимодействиям.

  Фундаментальные взаимодействия — это качественно различающиеся типы взаимодействия элементарных частиц и составленных из них тел.

   Издавна человек стремился познать  и понять окружающий его физический  мир. Оказывается, все бесконечное  разнообразие физических процессов, происходящих в нашем мире, можно объяснить существованием в природе очень малого количества фундаментальных взаимодействий. Взаимодействием их друг с другом объясняется упорядоченность расположения небесных тел во Вселенной. Именно они являются теми «стихиями», которые движут небесными телами, порождают свет и делают возможной саму жизнь .

  Таким образом, все процессы  и явления в природе, будь  то падение яблока, взрыв сверхновой  звезды, прыжок пингвина или радиоактивный  распад веществ, происходят в результате этих взаимодействий.

  Структура вещества этих тел  стабильна благодаря связям между  составляющими его частицами.

В физике механическая энергия делится на два вида — потенциальную и  кинетическую энергию. Причиной изменения  движения тел (изменения кинетической энергии) является сила (потенциальная энергия) . Исследуя окружающий нас мир, мы можем заметить множество самых разнообразных сил: сила тяжести, сила натяжения нити, сила сжатия пружины, сила столкновения тел, сила трения, сила сопротивления воздуха, сила взрыва и т. д. Однако когда была выяснена атомарная структура вещества, стало понятно, что все разнообразие этих сил есть результат взаимодействия атомов друг с другом. Поскольку основной вид межатомного взаимодействия — электромагнитное, то, как оказалось, большинство этих сил — лишь различные проявления электромагнитного взаимодействия.

  Существует лишь четыре вида фундаментальных взаимодействий :

1) гравитационное

2) электромагнитное

3) сильное

4) слабое

Ведутся поиски других типов фундаментальных взаимодействий, как в явлениях микромира, так и в космических масштабах, однако пока какого-либо другого типа фундаментального взаимодействия не обнаружено.

 

 

   Гравитационное взаимодействие  - универсальное фундаментальное взаимодействие между всеми материальными телами , в нем участвуют все виды материи, все объекты природы, все элементарные частицы! В приближении малых скоростей и слабого гравитационного взаимодействия описывается теорией тяготения Ньютона, в общем случае описывается общей теорией относительности Эйнштейна. Гравитация является самым слабым из четырех типов фундаментальных взаимодействий. В отличие от электромагнитного взаимодействия, при  гравитационном взаимодействии возможно только притяжение, зависящее от массы частиц и расстояния между ними. В квантовом пределе гравитационное взаимодействие должно описываться квантовой теорией гравитации, которая ещё полностью не разработана,квант гравитационного поля не выявлен.

Гравитация  определяет движение планет в звездных системах, играет важную роль в процессах, протекающих в звездах, управляет эволюцией Вселенной, в земных условиях проявляет себя как сила взаимного притяжения. Это небольшое число примеров из огромного списка эффектов гравитации.

     Согласно общей теории относительности, гравитация связана с кривизной пространства-времени и описывается в терминах так называемой римановой геометрии. В настоящее время все экспериментальные и наблюдательные данные о гравитации укладываются в рамки общей теории относительности. Однако данные о сильных гравитационных полях по существу отсутствуют, поэтому экспериментальные аспекты этой теории содержат много вопросов. Такая ситуация порождает появление различных альтернативных теорий гравитации, предсказания которых практически неотличимы от предсказаний общей теории относительности для физических эффектов в Солнечной системе, но ведут к другим следствиям в сильных гравитационных полях.

     Если пренебречь всеми релятивистскими  эффектами и ограничиться слабыми  стационарными гравитационными полями, то общая теория относительности сводится к ньютоновской теории всемирного тяготения. В этом случае, как известно, потенциальная энергия взаимодействия двух точечных частиц с массами m1 и m2 дается соотношением

где r - расстояние между частицами, G - ньютоновская гравитационная постоянная, играющая роль константы гравитационного взаимодействия. Данное соотношение показывает, что потенциальная энергия взаимодействия V(r) отлична от нуля при любом конечном r и спадает к нулю очень медленно. По этой причине говорят, что гравитационное взаимодействие является дальнодействующим.

     Из многих физических предсказаний  общей теории относительности  отметим три. Теоретически установлено,  что гравитационные возмущения  могут распространяться в пространстве в виде волн, называемых гравитационными. Распространяющиеся слабые гравитационные возмущения во многом аналогичны электромагнитным волнам. Их скорость равна скорости света, они имеют два состояния поляризации, для них характерны явления интерференции и дифракции. Однако в силу чрезвычайно слабого взаимодействия гравитационных волн с веществом их прямое экспериментальное наблюдение до сих пор не было возможно. Тем не менее данные некоторых астрономических наблюдений по потере энергии в системах двойных звезд свидетельствуют о возможном существовании гравитационных волн в природе.

     Теоретическое исследование условий  равновесия звезд в рамках  общей теории относительности  показывает, что при определенных  условиях достаточно массивные  звезды могут начать катастрофически сжиматься. Это оказывается возможным на достаточно поздних стадиях эволюции звезды, когда внутреннее давление, обусловленное процессами, ответственными за светимость звезды, не в состоянии уравновесить давление сил тяготения, стремящихся сжать звезду. В результате процесс сжатия уже ничем не может быть остановлен. Описанное физическое явление, предсказанное теоретически в рамках общей теории относительности, получило название гравитационного коллапса. Исследования показали, что если радиус звезды становится меньше так называемого гравитационного радиуса

 

Rg = 2GM / c2,

 

где M - масса звезды, а c - скорость света, то для внешнего наблюдателя звезда гаснет. Никакая информация о процессах, идущих в этой звезде, не может достичь внешнего наблюдателя. При этом тела, падающие на звезду, свободно пересекают гравитационный радиус. Если в качестве такого тела подразумевается наблюдатель, то ничего, кроме усиления гравитации, он не заметит. Таким образом, возникает область пространства, в которую можно попасть, но из которой ничего не может выйти, включая световой луч. Подобная область пространства называется черной дырой. Существование черных дыр является одним из теоретических предсказаний общей теории относительности, некоторые альтернативные теории гравитации построены именно так, что они запрещают такого типа явления. В связи с этим вопрос о реальности черных дыр имеет исключительно важное значение. В настоящее время имеются наблюдательные данные, свидетельствующие о наличии черных дыр во Вселенной.

     В рамках общей теории относительности  впервые удалось сформулировать  проблему эволюции Вселенной.  Тем самым Вселенная в целом  становится не предметом спекулятивных  рассуждений, а объектом физической  науки. Раздел физики, предметом которого является Вселенная в целом, называется космологией. В настоящее время считается твердо установленным, что мы живем в расширяющейся Вселенной.

     Современная  картина эволюции Вселенной основывается  на представлении о том, что  Вселенная, включая такие ее атрибуты, как пространство и время, возникла в результате особого физического явления, называемого Большой Взрыв, и с тех пор расширяется. Согласно теории эволюции Вселенной, расстояния между далекими галактиками должны увеличиваться со временем, и вся Вселенная должна быть заполнена тепловым излучением с температурой порядка 3 K. Эти предсказания теории находятся в прекрасном соответствии с данными астрономических наблюдений. При этом оценки показывают, что возраст Вселенной, то есть время, прошедшее с момента Большого Взрыва, составляет порядка 10 млрд лет. Что касается деталей Большого Взрыва, то это явление слабо изучено и можно говорить о загадке Большого Взрыва как о вызове физической науке в целом. Не исключено, что объяснение механизма Большого Взрыва связано с новыми, пока еще неизвестными законами Природы. Общепринятый современный взгляд на возможное решение проблемы Большого Взрыва основывается на идее объединения теории гравитации и квантовой механики.

 

Электромагнитное взаимодействие  - взаимодействие частиц, имеющих электрический заряд и (или) магнитный момент.

    В электромагнитном взаимодействии участвуют все заряженные тела, все заряженные элементарные частицы. В этом смысле оно достаточно универсально. Классической теорией электромагнитного взаимодействия является максвелловская электродинамика. В качестве константы связи принимается заряд электрона e.

     Если  рассмотреть два покоящихся точечных  заряда q1 и q2 , то их электромагнитное  взаимодействие сведется к известной  электростатической силе. Это означает, что взаимодействие является дальнодействующим и медленно спадает с ростом расстояния между зарядами.

     Классические  проявления электромагнитного взаимодействия  хорошо известны, и мы не будем  на них останавливаться. С точки зрения квантовой теории переносчиком электромагнитного взаимодействия является элементарная частица фотон - безмассовый бозон со спином 1. Квантовое электромагнитное взаимодействие между зарядами условно изображается следующим образом:

 

 

 

    Заряженная  частица испускает фотон, в силу чего состояние ее движения изменяется. Другая частица поглощает этот фотон и также изменяет состояние своего движения. В результате частицы как бы чувствуют наличие друг друга. Хорошо известно, что электрический заряд является размерной величиной. Удобно ввести безразмерную константу связи электромагнитного взаимодействия. Для этого надо использовать фундаментальные постоянные  и c. В результате приходим к следующей безразмерной константе связи, называемой в атомной физике постоянной тонкой структуры

= e2/c 1/137.

 

Легко заметить, что данная константа значительно  превышает константы гравитационного  и слабого взаимодействий.

    С современной  точки зрения электромагнитное  и слабое взаимодействия представляют  собой различные стороны единого электрослабого взаимодействия. Создана объединенная теория электрослабого взаимодействия - теория Вайнберга-Салама-Глэшоу, объясняющая с единых позиций все аспекты электромагнитных и слабых взаимодействий. Можно ли понять на качественном уровне, как происходит разделение объединенного взаимодействия на отдельные, как бы независимые взаимодействия?

    Пока  характерные энергии достаточно  малы, электромагнитное и слабое  взаимодействия отделены и не  влияют друг на друга. С ростом  энергии начинается их взаимовлияние, и при достаточно больших энергиях эти взаимодействия сливаются в единое электрослабое взаимодействие. Характерная энергия объединения оценивается по порядку величины как 102 ГэВ (ГэВ - это сокращенное от гигаэлектрон-вольт, 1 ГэВ = 109 эВ, 1 эВ = 1.6·10-12 эрг = 1.6·1019 Дж). Для сравнения отметим, что характерная энергия электрона в основном состоянии атома водорода порядка 10-8 ГэВ, характерная энергия связи атомного ядра порядка 10-2 ГэВ, характерная энергия связи твердого тела порядка 10-10 ГэВ. Таким образом, характерная энергия объединения электромагнитных и слабых взаимодействий огромна по сравнению с характерными энергиями в атомной и ядерной физике. По этой причине электромагнитное и слабое взаимодействия не проявляют в обычных физических явлениях своей единой сущности.

 

Сильное взаимодействие

  Сильное взаимодействие ответственно  за устойчивость атомных ядер. Поскольку атомные ядра большинства химических элементов стабильны, то ясно, что взаимодействие, которое удерживает их от распада, должно быть достаточно сильным. Хорошо известно, что ядра состоят из протонов и нейтронов. Чтобы положительно заряженные протоны не разлетелись в разные стороны, необходимо наличие сил притяжения между ними, превосходящих силы электростатического отталкивания. Именно сильное взаимодействие является ответственным за эти силы притяжения.

    Характерной чертой сильного  взаимодействия является его зарядовая независимость. Ядерные силы притяжения между протонами, между нейтронами и между протоном и нейтроном по существу одинаковы. Отсюда следует, что с точки зрения сильных взаимодействий протон и нейтрон неотличимы и для них используется единый термин нуклон, то есть частица ядра.

 

Характерный масштаб сильного взаимодействия можно  проиллюстрировать рассмотрев два  покоящихся нуклона. Теория приводит к  потенциальной энергии их взаимодействия в виде потенциала Юкавы 

 

где величина r 10-13  см и совпадает по порядку величины с характерным размером ядра, g - константа связи сильного взаимодействия. Это соотношение показывает, что сильное взаимодействие является короткодействующим и по существу полностью сосредоточено на расстояниях, не превышающих характерного размера ядра. При r > r0 оно практически исчезает. Известным макроскопическим проявлением сильного взаимодействия служит эффект -радиоактивности. Следует, однако, иметь в виду, что потенциал Юкавы не является универсальным свойством сильного взаимодействия и не связан с его фундаментальными аспектами.

    В настоящее время существует  квантовая теория сильного взаимодействия, получившая название квантовой  хромодинамики. Согласно этой  теории, переносчиками сильного  взаимодействия являются элементарные частицы - глюоны. По современным представлениям частицы, участвующие в сильном взаимодействии и называемые адронами, состоят из элементарных частиц - кварков.

    Кварки представляют собой фермионы  со спином 1/2 и ненулевой массой. Наиболее удивительным свойством кварков является их дробный электрический заряд. Кварки формируются в три пары (три поколения дублетов), обозначаемые следующим образом:

u c t

 

d s b

 

Каждый  тип кварка принято называть ароматом, так что существуют шесть кварковых  ароматов. При этом u-, c-, t-кварки имеют электрический заряд 2/3|e| , а d-, s-, b-кварки - электрический заряд -1/3|e|, где e - заряд электрона. Кроме того, существуют три кварка данного аромата. Они отличаются квантовым числом, называемым цветом и принимающим три значения: желтый, синий, красный. Каждому кварку соответствует антикварк, имеющий по отношению к данному кварку противоположный электрический заряд и так называемый антицвет: антижелтый, антисиний, антикрасный. Принимая во внимание число ароматов и цветов, мы видим, что всего существуют 36 кварков и антикварков.

Информация о работе Фундаментальные взаимодействия в природе