Генная инженерия и биотехнологии

Автор работы: Пользователь скрыл имя, 28 Декабря 2010 в 14:28, доклад

Описание

ДНК была открыта Иоганном Фридрихом Мишером в 1869 году. Вначале новое вещество получило название нуклеин, а позже, когда Мишер определил, что это вещество обладает кислотными свойствами, вещество получило название нуклеиновая кислота.

Содержание

1.История изучения ДНК (DNA) стр. 3-4

2.История развития генетической инженерии стр. 4-7
3.Генная инженерия в сельском хозяйстве стр. 7-8
4.Генная терапия человека стр. 8-9
5.Проект "Геном человека" стр. 10
6.Социально-этические проблемы генной инженерии стр. 10-13
7.Ближайшие задачи генетиков стр. 13-14
8.Биотехнология и генная инженерия стр. 15-16
9. Конференции по генетике стр. 17-18
10. Список литературы стр. 19

Работа состоит из  1 файл

Федеральное министерство по образованию.doc

— 241.50 Кб (Скачать документ)

Основные трудности  были связаны с введением готового гена в наследственный аппарат клетки. Собственно, именно из-за этих трудностей ещё 15-20 лет назад затеи с модификацией генетического аппарата считали  безнадёжным и даже фантастическим делом. 

 

Генная  инженерия в сельском хозяйстве 

К концу 1980-х  удалось успешно внедрить новые  гены в десятки видов растений и животных — создать растения табака со светящимися листьями, томаты, легко переносящие заморозки, кукурузу, устойчивую к воздействию пестицидов. 

Одна из важных задач - получение растений, устойчивых к вирусам, так как в настоящее  время не существует других способов борьбы с вирусными инфекциями сельскохозяйственных культур. Введение в растительные клетки генов белка оболочки вируса, делает растения устойчивыми к данному вирусу. В настоящее время получены трансгенные растения, способные противостоять воздействию более десятка различных вирусных инфекций. 

Еще одна задача связана с защитой растений от насекомых-вредителей. Применение инсектицидов не вполне эффективно, во-первых, из-за их токсичности, во-вторых, потому, что дождевой водой они смываются с растений. В генно-инженерных лабораториях Бельгии и США были успешно проведены работы по внедрению в растительную клетку генов земляной бактерии Bacillus thuringiensis, позволяющих синтезировать инсектициды бактериального происхождения. Эти гены ввели в клетки картофеля, томатов и хлопчатника. Трансгенные растения картофеля и томатов стали устойчивы к непобедимому колорадскому жуку, растения хлопчатника оказались устойчивыми к разным насекомым, в том числе к хлопковой совке. Использование генной инженерии позволило сократить применение инсектицидов на 40 - 60%. 

Генные инженеры вывели трансгенные растения с удлиненным сроком созревания плодов. Такие помидоры, например, можно снимать с куста красными, не боясь, что они перезреют при транспортировке. 

Список растений, к которым успешно применены  методы генной инженерии, составляет около  пятидесяти видов, включая яблоню, сливу, виноград, капусту, баклажаны, огурец, пшеницу, сою, рис, рожь и много других сельскохозяйственных растений. 
 

Генная  терапия человека 

На людях технология генной инженерии была впервые применена  для лечения Ашанти Де Сильвы, четырёхлетней  девочки, страдавшей от тяжёлой формы иммунодефицита. Ген, содержащий инструкции для производства белка аденозиндезаминазы (ADA), был у неё повреждён. А без белка ADA белые клетки крови умирают, что делает организм беззащитным перед вирусами и бактериями. 

Работающая копия  гена ADA была введена в клетки крови Ашанти с помощью модифицированного вируса. Клетки получили возможность самостоятельно производить необходимый белок. Через 6 месяцев количество белых клеток в организме девочки поднялось до нормального уровня. 

После этого  область генной терапии получила толчок к дальнейшему развитию. С 1990-х годов сотни лабораторий ведут исследования по использованию генной терапии для лечения заболеваний. Сегодня мы знаем, что с помощью генной терапии можно лечить диабет, анемию, некоторые виды рака, болезнь Хантингтона и даже очищать артерии. Сейчас идёт более 500 клинических испытаний различных видов генной терапии. 

Неблагоприятная экологическая обстановка и целый  ряд других подобных причин приводят к тому, что все больше детей  рождается с серьезными наследственными дефектами. В настоящее время известно 4000 наследственных заболеваний, для большинства из которых не найдено эффективных способов лечения. 

 

Сегодня существует возможность диагностировать многие генетические заболевания ещё на стадии эмбриона или зародыша. Пока можно только прекратить беременность на самой ранней стадии в случае серьёзных генетических дефектов, но скоро станет возможным корректировать генетический код, исправляя и оптимизируя генотип будущего ребёнка. Это позволит полностью избежать генетических болезней и улучшить физические, психические и умственные характеристики детей. 

Сегодня мы можем  отметить, что за тридцать лет своего существования генная инженерия  не причинила никакого вреда самим  исследователям, не принесла ущерба ни природе, ни человеку. Свершения генной инженерии как в познании механизмов функционирования организмов, так и в прикладном плане весьма внушительны, а перспективы поистине фантастичны. 
 
 

Проект "Геном человека" 

В 1990 году в США  был начат проект "Геном человека", целью которого было определить весь генетический год человека. Проект, в котором важную роль сыграли и российские генетики, был завершён в 2003 году. В результате проекта 99% генома было определено с точностью 99,99% (1 ошибка на 10000 нуклеотидов). Завершение проекта уже принесло практические результаты, например, простые в применении тесты, позволяющие определять генетическую предрасположенность ко многим наследственным заболеваниям. 

 

Высказаны, например, надежды, что, благодаря расшифровке генома, уже к 2006 году будут разработаны препараты для лечения такого опасного заболевания, как СПИД, к 2009 году будут определены гены, которые связаны со злокачественными новообразованиями, а к 2010-2015 году будут установлены механизмы возникновения почти всех видов рака. К 2020 году может быть завершена разработка препаратов, предотвращающих рак. 
 

Социально-этические  проблемы генной инженерии 

Биоэтика как  наука сформировалась сравнительно недавно — в конце 60-х—начале 70-х годов. Ее возникновение обусловлено прежде всего достижениями медицины, которые определили успех таких ее направлений, как генная инженерия, трансплантация органов, биотехнология и т.д. А эти успехи, в свою очередь, обострили старые и вызвали новые моральные проблемы, с которыми сталкивается врач в общении с пациентом, его родственниками и, следовательно, со всем обществом. Проблемы, возникли как неизбежность, они часто не имеют однозначного решения и становятся очевидными, когда мы задаем  вопросы: с какого момента следует считать наступление смерти (каков ее основной критерий)? Допустима ли эвтаназия (легкая смерть)? Имеются ли пределы поддержания жизни смертельно больного человека и если да, то каковы они? С какого момента зародыш следует считать живым существом? Допустимо ли преждевременное прекращение беременности, убийство ли это живого существа? В одном ряду с этими вопросами находится и проблема генной инженерии человека. Ее можно трактовать так: допустимо ли, с точки зрения моральных норм, хирургическое вмешательство в генотип человека?

Актуальность  генной инженерии человека понимается сразу, как только мы обратимся к  необходимости лечения больных  с наследственными болезнями, обусловленными геномом. При этом особенно актуальна  забота о будущих поколениях, которые не должны расплачиваться собственным здоровьем за недостатки и ущербность своего генома и генофонда сегодняшнего поколения. 

Проблемы, связанные  с генной инженерией сегодня, приобретают  глобальный масштаб. Заболевания на генном уровне все чаще и чаще обусловлены развитием цивилизации. В настоящее время человечество пока не желает отказываться от определенных  технологий, несущих не только комфорт и мате­риальные блага, но и деградацию естественной среды обитания людей. Поэтому в ближайшей перспективе  побочные явления научно-технического прогресса отрицательно скажутся на организме человека. Развитие атомной энергетики, получение синтезированных химических соединений, использование гербицидов в сельском хозяйстве и т.д. создают новую природную среду, которая очень часто  является не то, что идеальной, а просто вредной для здоровья человека. Повышенная радиация и увеличение доли химических веществ в пище и атмосфере становятся факторами, вызывающими мутации у человека, многие из которых как раз и проявляются в виде наследственных болезней и аномалий. 

Имеющиеся исследования свидетельствуют о том, что у  современных поколений около 50% патологий  обусловлены  нарушениями в структуре  и функциях наследственного аппарата. Каждые пять новорожденных из ста  имеют выраженные генетические дефекты, связанные с мутациями  или хромосом, или генов. 

Генотипические  факторы играют важную роль не только в появлении физических болезней, но и в развитии отклонений в психической  деятельности человека. Так в результате проведенных исследований выяснилось, что около 50% усыновленных детей, родители которых были психически больны, воспитываясь с годовалого возраста в нормальной семье, в дальнейшем своем развитии страдали психическими заболеваниями. И наоборот, дети, родившиеся от нормальных родителей, попадая в условия психически больных семей, не отличались по частоте заболеваний от нормальных. Имеются также данные о влиянии биологических факторов на предрасположенность к различного рода отклонениям от нормального поведения, к правонарушениям. 

Необходимость исправления «ошибок природы», т.е. генной терапии наследственных болезней, выдвигает на первый план такую область  молекулярной генетики, которую называют генной (или генетической) инженерией. Генная инженерия — это раздел молекулярной биологии, прикладная молекулярная генетика, задачей которой является целенаправленное конструирование новых, не существующих в природе сочетаний генов при помощи генетических и биохимических методов. Она основана на извлечении из клеток какого-либо организма гена или группы генов, соединении их с определенными молекулами нуклеиновых кислот и внедрении полученных гибридных молекул в клетки другого организма. 

Генная инженерия  открывает широкие просторы и  множество путей решения проблем  медицины, генетики, сельского хозяйства, микробиологической промышленности и т.д. С ее помощью можно целенаправленно манипулировать генетическим материалом для создания новых или реконструкции старых генотипов. Имеющиеся достижения в этой области показывают перспективность генной терапии в лечении наследственных болезней. 

Однако возникает  вопрос о социально-этической оценке и значимости генной инженерии вообще и генной терапии человека в особенности. Кто даст гарантии того, что генная терапия не будет использована во вред человеку, как это произошло со многими открытиями в области физики, химии и других наук. Иными словами, человечество столкнулось с дилеммой: или затормозить прогресс развития науки, или дать миру новые источники тревог.

Возникает проблема, связанная и с тем, что генная терапия основана на введении в организм чужеродного генетического материала, что означает непосредственное вмешательство в генотип человека. Именно это и дает  основание некоторым авторам  выступать против генной инженерии. 

При существующем уровне развития генной инженерии большинство ученых не возьмут на себя смелость дать однозначный ответ на все возникающие вопросы. Но возражение против генной инженерии на том основании, что в организм человека вводится чужеродный материал, давно устарело. Скольким людям помогли операции по трансплантации органов, спасшие им жизнь, которые воспринимаются сегодня как нормальное явление и не вызывают каких-либо серьезных возражений этического плана, в случае введения в организм генетического материала вместо аналогичного, но не справляющегося со своими функциями вообще не будет происходить изменение генома. Главным противникам генной инженерии следует иметь в виду, что любое лекарственное средство, введенное в организм, является для него чужеродным  и довольно часто сопровождается отрицательными последствиями.

Люди, связывающие  исследования генома человека с покушением на свободное развитие личности и  выступающие в связи с этим за их приостановление, допускают возможность  ограничения процесса познания вообще. Новые знания, получаемые человеком, — это естественный фактор его собственной эволюции. Само познание и научные исследования не несут в себе ни добра, ни зла. Открытие атома изначально не предполагало   угрозу атомной войны или Чернобыль. Исследование молекулярного строения генома способствует раскрытию механизма индивидуального развития человеческого организма и ведет к более глубокому пониманию эволюции человека. Эти исследования открывают путь к решению практических задач, так как помогают вскрыть генную основу наследственных болезней и в итоге утверждают генную диагностику и терапию. 

Противникам генной инженерии человека можно ответить, что  людей-роботов можно получить и без участия генетики: этого  можно добиться путем социально-политического, идеологического, педагогического и других форм манипулирования сознанием людей. Исторический опыт имеет массу таких  примеров. Не запрещать же теперь и психологию, и педагогику, и политику. Однако рано или поздно наука обязательно выходит за рамки любых запретов. Вот именно здесь в использовании достижений науки должен действовать этический кодекс ученого, в нашем случае — жесткие рамки биоэтики, понимание того, что главное — не навредить здоровью человека, не нанести вреда личности. Что касается России, то сегодня наша страна серьезно отстает от передовых стран в области развития генетики. И отказ от исследования в этой области еще более ухудшит положение. 

Информация о работе Генная инженерия и биотехнологии