Автор работы: Пользователь скрыл имя, 17 Февраля 2013 в 01:15, реферат
Несколько лет назад ученые, изучая микроструктуру органической материи, сделали поразительный вывод: возникновение и развитие жизни на нашей планете, если считать по Дарвину, потребовало бы много больше времени, нежели действительная история, охватывающая период от первых на Земле живых молекул до вершины природы – человека. И тут пришлось вспомнить основоположников палеонтологии – науки о развитии жизни на Земле: Жоржа Кювье (1769–1832) и Жоффруа Сент-Илера (1772–1844).
В определении понятия «жизнь» к 80-м гг. ХХ в. сложилось две позиции. Функциональный подход объединял сторонников представлений об организме как о своеобразном «черном ящике» (с неизвестной внутренней структурой или с не особенно важной), своеобразие которого заключается в наличии «управляющих процессов» передачи информации. Лидеры этого подхода — математики А. А. Ляпунов и А. Н. Колмогоров — использовали средства высшей математики в определении специфики жизни, они рассматривали гомеостатические процессы. Их больше интересовали процессы преобразования информации, и они допускали возможность и небелковых форм жизни. Сторонники другого, субстанционального, подхода признавали ключевым наличие определенных субстанций и определенных ее структур. К лидерам этого подхода относился и Опарин, для которого важнейшим было признание наличия обмена веществ, и выдающийся советский биолог В. А. Энгельгардт. Они считали, что изучение проблемы жизни должно основываться на данных химии, а не математики. В организации живого все указанные свойства проявляются на всех уровнях. Но каждый из них имеет и свои особенности.
Под самоорганизацией мы понимаем необратимый процесс, приводящий в результате кооперативного действия подсистем к образованию более сложных структур всей системы. Самоорганизация -- элементарный процесс эволюции, состоящий из не ограниченной последовательности процессов самоорганизации. Термин "самоорганизация" используется для обозначения диссипативной самоорганизации, т. е. образования диссипативных структур. Наряду с диссипативной самоорганизацией существуют и другие формы самоорганизации, такие как консервативная самоорганизация (образование структур кристаллов, биополимеров и т. д.) и дисперсионная самоорганизация (образование солитонных структур).
Для
объяснения процессов самоорганизации
рассматриваются открытые системы,
которые способны обмениваться с
окружающей средой веществом, энергией
или информацией. Открытая система
не может быть равновесной, потому ее
функционирование требует непрерывного
поступления энергии и вещества
из внешней среды, вследствие чего неравновесие
в системе усиливается. В конечном
итоге прежняя взаимосвязь
Попытка
выработки общей концепции
Предметом синергетики являются сложные самоорганизующиеся системы. Один из основоположников синергетики Г. Хакен определяет понятие самоорганизующейся системы следующим образом: “Мы называем систему самоорганизующейся, если она без специфического воздействия извне обретает какую-то пространственную, временную или функциональную структуру. Под специфическим внешним воздействием мы понимаем такое, которое навязывает системе структуру или функционирование. В случае же самоорганизующихся систем испытывается извне неспецифическое воздействие. Например, жидкость, подогреваемая снизу, совершенно равномерно обретает в результате самоорганизации макроструктуру, образуя шестиугольные ячейки”.
Таким образом, современное естествознание ищет пути теоретического моделирования самых сложных систем, которые присущи природе, систем, способных к самоорганизации, саморазвитию. Основные свойства самоорганизующихся систем - открытость, нелинейность, диссипативность.
Открытые системы - это такие системы, которые поддерживаются в определенном состоянии за счет непрерывного притока извне вещества, энергии или информации. Постоянный приток вещества, энергии или информации является необходимым условием существования неравновесных состояний в противоположность замкнутым системам, неизбежно стремящимся (в соответствии со вторым началом термодинамики) к однородному равновесному состоянию. Открытые системы - это системы необратимые; в них важным оказывается фактор времени.
Нелинейные системы, являясь неравновесными и открытыми, сами создают и поддерживают неоднородности в среде. В таких условиях между системой и средой могут иногда создаваться отношения обратной положительной связи, т. е. система влияет на свою среду таким образом, что в среде вырабатываются некоторые условия, которые в свою очередь обусловливают изменения в самой этой системе (например, в ходе химической реакции или какою-то другою процесса вырабатывается фермент, присутствие которого стимулирует производство его самого). Последствия такого рода взаимодействия открытой системы и ее среды могут быть самыми неожиданными и необычными.
Открытые неравновесные системы, активно взаимодействующие с внешней средой, могут приобретать особое динамическое состояние -- диссипативность, которую можно определить как качественно своеобразное макроскопическое проявление процессов, протекающих на микроуровне. Неравновесное протекание множества микропроцессов приобретает некоторую интегративную результирующую) на макроуровне, которая качественно отличается оттого, что происходит с каждым отдельным ее микроэлементом. Благодаря диссипативности в неравновесных системах могут спонтанно возникать новые типы структур, совершаться переходы от хаоса и беспорядка к порядку и организации, возникать новые динамические состояния материи. Главная идея синергетики -- это идея о принципиальной возможности спонтанного возникновения порядка и организации из беспорядка и хаоса в результате процесса самоорганизации. Решающим фактором самоорганизации является образование петли положительной обратной связи системы и среды. При этом система начинает самоорганизовываться и противостоит тенденции ее разрушения средой.
Становление самоорганизации во многом определяется характером взаимодействия случайных и необходимых факторов системы и ее среды. Система самоорганизуется не гладко и просто, не неизбежно. Самоорганизация переживает и переломные моменты - точки бифуркации. Вблизи точек бифуркации в системах наблюдаются значительные флуктуации, роль случайных факторов резко возрастает.
В
переломный момент самоорганизации
принципиально неизвестно, в каком
направлении будет происходить
дальнейшее развитие: станет ли состояние
системы хаотическим или она
перейдет на новый, более высокий
уровень упорядоченности и
Синергетика убедительно показывает, что даже в неорганической природе существуют классы систем, способных к самоорганизации. История развития природы - это история образования все более и более сложных нелинейных систем. Такие системы и обеспечивают всеобщую эволюцию природы на всех уровнях ее организации - от низших и простейших к высшим и сложнейшим (человек, общество, культура)
Рассмотрим процесс саморегуляции в живых сообществах на достаточно простом примере. Предположим, что в некой экологической нише совместно обитают кролики и лисы. Если в некое пространство с травой, произрастающей в достатке поместить кроликов, то, поедая траву, они начнут усиленно размножаться, т.е. произойдет реакция: Кролик + Трава = Больше кроликов, или К + Т => 2К (как эту реакцию записали бы химики). Данный процесс вполне аналогичен непрерывному подводу тепла (трава) в задаче с ячейками Бенара.
Но вот в данную экологическую нишу поместили хищных лисиц, которые питаются кроликами и размножаются: Лисица + Кролик => Больше лисиц, или химически: Л + К => 2Л.
Однако в свою очередь лисицы, как и кролики, являются жертвами. Лисицы — жертвы человека, который отстреливает их на мех: Лисицы => Мех, или химически: Л => М. Конечный продукт этой сложной реакции — мех — выводится вовне из реакционной зоны. Его можно рассматривать как носитель энергии, выводимый из системы, к которой энергия была вначале подведена, например, в виде травы. Таким образом, в экологической системе также существует поток энергии, аналогичный потоку, имеющему место в химическом реакторе.
Анализируя этот сложный процесс, можно заметить, что в нем существуют две автокаталические стадии (положительная обратная связь), играющие определенную роль в его самоорганизации. Одна из них — «производство» (рождение) кроликов от кроликов, поедающих траву, вторая — рождение лисиц от лисиц, поедающих кроликов. Чем больше кроликов имеется, тем больше их рождается при наличии запасов травы. И если бы не было хищных лисиц, неконтролируемое размножение кроликов привело бы к неконтролируемому увеличению их численности. Так произошло в Австралии в середине XIX в.
Однако
возможно такое же автокаталитическое
размножение лисиц при большом
количестве кроликов. Но если оно произойдет,
то приведет к резкому снижению численности
популяции кроликов. А это, в свою
очередь, приведет к уменьшению численности
популяции лисиц, так как им для
размножения надо поедать кроликов.
Когда численность лисиц
Фазовая
диаграмма колебаний
Анализ показывает, что в биосфере существует огромное количество сильно неравновесных систем, поэтому можно утверждать, что возникновение условий для их самоорганизации — явление довольно частое. А так как условия для самоорганизации выполнены, то жизнь становится столь же предсказуемой, как неустойчивость Бенара или любое другое вероятное событие. Тот факт, что жизнь возникла на молодой Земле через ~4- 109 лет после ее образования (т.е. 4,0∙109 лет тому назад) является аргументом спонтанной самоорганизации, произошедшей при благоприятных обстоятельствах.
Исследованием поведения неравновесных систем в точках потери устойчивости или переходов из одной формы самоорганизации в другую занимается теория бифуркаций или, как ее еще называют, теория катастроф.
Слово «бифуркация» означает
раздвоение и употребляется в
широком смысле для обозначения
всевозможных качественных перестроек
или метаморфоз различных объектов
при плавном изменении
Структура ДНК. Хранение и передачу наследственной информации в живых организмах обеспечивают природные органические полимеры — нуклеиновые кислоты. Различают их две разновидности — дезоксирибонуклеиновую кислоту (ДНК) и рибонуклеиновую кислоту (РНК). В состав ДНК входят азотистые основания (аденин (А), гуанин (Г), тимин (Г), цитозин (Ц)), дезоксирибоза С5Н10О4 и остаток фосфорной кислоты.
В РНК вместо тимина содержится урацил (У), а вместо дезоксирибозы - рибоза (С5Н10О5). Мономерами ДНК и РНК являются нуклеотиды, которые состоят из азотистых, пуриновых (аденин и гуанин) и пиримидиновых (урацил, тимин и цитозин) оснований, остатка фосфорной кислоты и углеводов (рибозы и дезоксирибозы).
Молекулы ДНК находятся в хромосомах ядра клетки живых организмов, в эквивалентных структурах митохондрий, хлоропластов, в прокариотных клетках и во многих вирусах. По своей структуре молекула ДНК похожа на двойную спираль (рис. 7.1). Структурная модель ДНК в виде двойной спирали впервые предложена в 1953 г. американским биохимиком Дж. Уотсоном (р. 1928) и английским биофизиком и генетиком Ф. Криком (р. 1916), удостоенными вместе с английским биофизиком М. Уилкинсоном (р. 1916), получившим рентгенограмму ДНК, Нобелевской премии 1962 г.