Исаак Ньютон

Автор работы: Пользователь скрыл имя, 08 Ноября 2011 в 13:55, реферат

Описание

Ньютон (Newton) Исаак (4.1.1643, Вулсторп, около Граптема, — 31.3.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления, изобретатель зеркального телескопа и автор важнейших экспериментальных работ по оптике

Содержание

Введение 2
Вершины научного творчества Ньютона 3
Сочинение «Анализ» Ньютона, 4
Бином Ньютона 7

2.2.1.Закон тяготения Ньютона 8

2.2.2.Законы Механики Ньютона 10

2.2.3.Кольца Ньютона 12
Метод Ньютона 12
Система рефлектора Ньютона 13
Список использованной литературы 14

Работа состоит из  1 файл

Исаак Ньютон.doc

— 132.50 Кб (Скачать документ)

 Во введении  к «Рассуждению о квадратуре  кривых» (основной текст 1665—66, введение и окончательный вариант 1670, опубликован 1704) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения предела и рассматривая его как первоначальное. Учение Н. о пределе через ряд посредствующих звеньев (Ж. Л. Д'Аламбер, Л. Эйлер) получило глубокое развитие в математике 19 в. (О. Л. Коши и др.). 

 В «Методе разностей» (опубликован 1711) Исаак Ньютон  дал решение задачи о проведении через n + 1 данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка и предложил интерполяционную формулу, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (опубликована 1704) Ньютона приводится классификация этих кривых, сообщаются понятия диаметра и центра, указываются способы построения кривых 2-го и 3-го порядка по различным условиям. Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (опубликована в 1707 по лекциям, читанным в 70-е гг. 17 в.) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у  Ньютона от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе. 

 Созданная   Ньютоном теория движения небесных  тел, основанная на законе всемирного  тяготения, была признана крупнейшими  английским учёными того времени  и резко отрицательно встречена  на европейском континенте. Противниками его  взглядов (в частности, в вопросе о тяготении) были картезианцы, воззрения которых господствовали в Европе (в особенности во Франции) в 1-й половине 18 в. Убедительным доводом в пользу теории Ньютона явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Декарта. Исключительную роль в укреплении авторитета  его теории  сыграла работа А. К. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Ньютон  в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанном на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс). 

 Вопрос о  природе тяготения во времена  Ньютона сводился в сущности  к проблеме взаимодействия, т.  е. наличия или отсутствия материального  посредника в явлении взаимного  притяжения масс. Не признавая  картезианских воззрений на природу тяготения, Ньютон., однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После его смерти  возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие его высказывания .: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез. 

 Могучий аппарат  ньютоновской механики, его универсальность  и способность объяснить и  описать широчайший круг явлений  природы, особенно астрономических,  оказали огромное влияние на  многие области физики и химии.  Ньютон писал, что было бы  желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели. Влияние его взглядов на дальнейшее развитие физики огромно. «Ньютон заставил физику мыслить по-своему, “классически”, как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе» (Вавилов С. И., Исаак Ньютон, 1961, с. 194, 196). 

 Материалистические  естественнонаучные воззрения совмещались у  Ньютона с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса. Однако он  четко отделял науку от религии. «Ньютон оставил ему (богу) ещё “первый толчок”, но запретил всякое дальнейшее вмешательство в свою солнечную систему» (Ф. Энгельс, Диалектика природы, 1969, с. 171). 

 На русский  язык переведены все основные  работы Ньютона.; большая заслуга  в этом принадлежит А. Н. Крылову и С. И. Вавилову

Соч.: Opera quae extant omnia. Commentariis illustravit S. Horsley, v. 1—5, L., 1779—85; в рус. пер.— Математические начала натуральной философии, с примечаниями и пояснениями А. Н. Крылова, в кн.: Крылов А. Н., Собр. трудов, т. 7, М.—Л., 1936; Лекции по оптике, пер. С. И. Вавилова, [М.], 1946; Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света, пер. и примечания С. И, Вавилова, 2 изд., М., 1954; Математические работы, пер. с лат. Д. Д. Мордухай-Болтовского, М.—Л., 1937; Всеобщая арифметика или книга об арифметическом синтезе и анализе, пер. А. П. Юшкевича, М.—Л., 1948. 

Бином Ньютона , название формулы, выражающей любую целую положительную степень суммы двух слагаемых (бинома, двучлена) через степени этих слагаемых. 

 Частными случаями бинома Ньютона при n = 2 и n = 3 являются известные формулы для квадрата и куба суммы а и b: (а + b)2 = а2 + 2ab + b2, (а + b)3 = а3 + 3a2b + 3ab2 + b3; при n = 4 получают (а + b)4 = a4+ 4a3b + 6a2b2 + 4ab3 + b4 и т.д. 

 Коэффициенты  формулы (или разложения) бинома Ньютона называют биномиальными коэффициентами; коэффициент при an-kbk Последнее обозначение связано с комбинаторикой: есть число сочетаний из n различных между собой элементов, взятых по k. Биномиальные коэффициенты обладают многими замечательными свойствами: все они целые положительные числа; крайние коэффициенты равны единице; коэффициенты членов, равноотстоящих от концов, одинаковы; коэффициенты возрастают от краев к середине; сумма всех коэффициентов равна 2n. Особенно важное значение имеет следующее свойство: сумма двух соседних коэффициентов в разложении (а + b) n равна определённому коэффициенту в разложении (а + b) n+1; например, суммы 1+3, 3+3, 3+1 соседних коэффициентов в формуле для (а + b)3 дают коэффициенты 4, 6 и 4 в формуле для (а + b)4. Вообще:  

  

 Пользуясь  этим свойством, можно, отправляясь  от известных коэффициентов для  (а + b)1, получить путём сложения биномиальные коэффициенты для любого n. Выкладки располагают в виде таблицы .  Формула Н. б. для целых положительных показателей была известна задолго до И. Ньютона; но им была указана (1676) возможность распространения этого разложения и на случай дробного или отрицательного показателя (хотя строгое обоснование этого было дано лишь Н. Абелем, 1826). В этом более общем случае формула Н. б. начинается так же, как формула (1); коэффициентом при an-kbk служит выражение, которое, в случае целого положительного п, обращается в нуль при всяком k > п, вследствие чего формула содержит лишь конечное число членов. В случае же дробного или отрицательного n все биномиальные коэффициенты отличны от нуля, и правая часть формулы содержит бесконечный ряд членов (биномиальный ряд). Если êbê < êаê, то этот ряд сходится, т. е., взяв достаточно большое число его членов, можно получить величину, сколь угодно близкую к (а + b) n .Формула Н Ньютона играет важную роль во многих областях математики (алгебре, теории чисел и др.).   

Закон тяготения Ньютона , закон всемирного тяготения, один из универсальных законов природы; согласно закону тяготения Ньютона: все материальные тела притягивают друг друга, причём величина силы тяготения не зависит от физических и химических свойств тел, от состояния их движения, от свойств среды, где находятся тела. На Земле тяготение проявляется прежде всего в существовании силы тяжести, являющейся результатом притяжения всякого материального тела Землёй. С этим связан термин «гравитация» (от лат. gravitas — тяжесть), эквивалентный термину «тяготение». 

Закон тяготения Ньютона , открытый  им в 17 ,формулируется следующим образом. Каждые две материальные частицы притягивают друг друга с силой F, прямо пропорциональной их массам m1 и m2 и обратно пропорциональной квадрату расстояния r между ними:сила F направлена вдоль прямой, соединяющей эти частицы. Коэффициент пропорциональности G — постоянная величина, наз. гравитационной постоянной в системе СГС G » 6,7·10-8 дин×см×г-2. Под «частицами» здесь подразумеваются тела, размеры которых пренебрежимо малы по сравнению с расстояниями между ними, т. е. материальные точки. Закон тяготения Ньютона можно интерпретировать иначе, полагая, что каждая материальная точка с массой m1 создаёт вокруг себя поле тяготения (гравитационное поле), в котором любая другая свободная материальная точка, находящаяся на расстоянии r от центра поля, приобретает ускорение и направленное к центру поля.

Силы тяготения (и гравитационные поля) отдельных интегральных частиц обладают свойством аддитивности, т. е. сила, действующая на некоторую частицу со стороны нескольких др. частиц, равна геометрической сумме сил, действующих со стороны каждой частицы. Из этого следует, что тяготение между реальными материальными телами, с учётом их размеров, формы и распределения плотности вещества, можно определить, вычислив сумму сил тяготения (учитывающую направление составляющих сил) отдельных малых частиц, на которые можно мысленно разбить тела. Таким путём установлено, что шарообразное тело (однородное или со сферическим распределением плотности вещества) притягивает точно так же, как материальная точка, если расстояние r измеряется от центра шара. 

 В основном силы тяготения определяют характер движения небесных тел в космическом пространстве. Именно при изучении движения планет и их спутников был открыт и закон тяготения Ньютона впоследствии строго обоснован. В начале 17 в. И. Кеплером были установлены эмпирическим путём основные закономерности движения планет (законы Кемплера). Исходя из них, современники Ньютона (французский астроном И. Бульо, итальянский физик Дж. Борелли, английский физик Р. Гук) высказывали соображения, что движение планет может быть объяснено действием силы, которая притягивает каждую планету к Солнцу и которая убывает пропорционально квадрату расстояния от Солнца. Однако только Ньютон в «Математических началах натуральной философии» (1687) впервые это строго доказал, опираясь на свои первые два закона механики и на созданные им новые математические методы, составившие основу дифференциального и интегрального исчисления. Ньютон доказал, что движение каждой планеты должно подчиняться первым двум законам Кеплера именно в том случае, если они движутся под действием силы тяготения Солнца .Далее Ньютон показал, что движение Луны может быть приближённо объяснено с помощью аналогичного силового поля Земли и что сила тяжести на Земле есть результат воздействия этого же силового поля на материальные тела вблизи поверхности Земли. На основании 3-го закона механики Ньютон заключил, что притяжение есть взаимное свойство, и пришёл к формулировке своего закона тяготения для любых материальных частиц. Выведенный по эмпирическим данным, на основании результатов наблюдений, с неизбежностью приближённых, Закон тяготения Ньютона представлял собой вначале рабочую гипотезу. В дальнейшем потребовалась колоссальная работа в течение более чем двухсот лет для строгого обоснования этого закона. 

Закон тяготения Ньютона явился основой небесной механики. В течение 17—19 вв. одной из основных задач небесной механики было доказательство того, что гравитационное взаимодействие по закону Ньютона точно объясняет наблюдаемые движения небесных тел в Солнечной системе. Сам Ньютон показал, что взаимное притяжение между Землёй, Луной и Солнцем объясняет довольно точно ряд наблюдавшихся с давних пор особенностей в движении Луны (т. н. вариации, движение узлов, движение перигея, колебания наклона лунной орбиты), что Земля из-за своего вращения и вследствие действия сил тяготения между частицами вещества Земли должна быть сплюснута у полюсов; действием сил тяготения Ньютон объяснил также и явление прецессии земной оси, приливы и отливы и т.д. Одним из наиболее ярких в истории астрономии подтверждений справедливости закона тяготения Ньютона явилось открытие в 1845—46 планеты Нептун — результат предварительных теоретических расчётов, предсказавших положение планеты. Современные теории движения Земли, Луны и планет, основанные на законе  тяготения Ньютона отражают наблюдаемые движения этих тел во всех деталях, за исключением нескольких эффектов (движения перигелиев Меркурия, Венеры, Марса), которые находят своё объяснение в релятивистской небесной механике, основанной на теории тяготения Эйнштейна. 

 Гравитационное  взаимодействие в соответствии  с законом тяготения Ньютона играет главную роль в движении звёздных систем типа двойных и кратных звёзд, внутри звёздных скоплений и галактик. Однако гравитационные поля внутри звёздных скоплений и галактик имеют очень сложный характер, изучены ещё недостаточно, вследствие чего движения внутри них изучают методами, отличными от методов небесной механики . Гравитационное взаимодействие играет также существенную роль во всех космических процессах, в которых участвуют скопления больших масс вещества. Закон тяготения Ньютона является основой при изучении движения искусственных небесных тел, в частности искусственных спутников Земли и Луны, космических зондов. На законе тяготения Ньютона опирается гравиметрия. Силы притяжения между обычными макроскопическими материальными телами на Земле могут быть обнаружены и измерены, но не играют сколько-нибудь заметной практической роли. В микромире силы притяжения ничтожно малы по сравнению с внутримолекулярными и внутриядерными силами. 

 Ньютон оставил открытым вопрос о природе тяготения. Не было объяснено также и предположение о мгновенном распространении тяготения в пространстве (т. е. предположение о том, что с изменением положений тел мгновенно изменяется и сила тяготения между ними), тесно связанное с природой тяготения. Трудности, связанные с этим, были устранены лишь в теории тяготения Эйнштейна, представляющей собой новый этап в познании объективных законов природы.  
 

Информация о работе Исаак Ньютон