Электромагнитная картина мира

Автор работы: Пользователь скрыл имя, 21 Ноября 2012 в 15:29, доклад

Описание

Основы новых представлений о материи были заложены в работах X. Эрстеда и А. Ампера в конце XVIII – начале XIX века. Затем, М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Открыв явление электромагнитной индукции, он сделал вывод, что огромную роль в передаче электрических и магнитных сил играет среда. Одним из первых идеи Фарадея оценил Д. Максвелл, создавший электромагнитную теорию в середине XIX века.

Работа состоит из  1 файл

Электромагнитная картина мира.doc

— 37.00 Кб (Скачать документ)

   Основы новых представлений о материи были заложены в работах X. Эрстеда и А. Ампера в конце XVIII – начале XIX века. Затем, М. Фарадей пришел к мысли о необходимости замены корпускулярных представлений о материи континуальными, непрерывными. Открыв явление электромагнитной индукции, он сделал вывод, что огромную роль в передаче электрических и магнитных сил играет среда. Одним из первых идеи Фарадея оценил Д. Максвелл, создавший электромагнитную теорию в середине XIX века. Тем самым было завершено создание электродинамики, еще одной фундаментальной физической теории.

   Джеймс Клерк Максвелл, британский физик род. 13 июня 1831 года. Обучался в университетах Эдинбурга и Кембриджа. Был профессором Лондонского университета. В 1871 году Максвелл стал профессором Кембриджского университета, где впоследствии создал известную Кавендишскую лабораторию – первую в Британии специально оборудованную физическую лабораторию. Максвелл - один из родоначальников статистической физики и классической электродинамики, член Королевского общества Лондона.

   Его первая научная работа появилась еще, когда он был учеником в школе – он придумал оригинальный способ чертежа овальных фигур.

   Чрезвычайно велика роль Джеймса Максвелла в разработке и становлении молекулярно-кинетической теории:

Максвелл первым высказал утверждение о статистическом характере законов природы. В 1866 им был открыт первый статистический закон — закон распределения молекул по скоростям (Максвелла распределение). Кроме того, он рассчитал значения вязкости газов в зависимости от скоростей и длины свободного пробега молекул, вывел ряд соотношений термодинамики.

   Максвеллу приписывают создание первой в мире цветной фотографии, на ней была изображена «ленточка из шотландки». 

   Он изобрел волчок с разной краской на поверхности которого нанесены слои разной краски – при вращении этого волчка образовывались самые интересные комбинации цветов: красный и желтый давал оранжевый, синий и желтый – зеленый, а все цвета спектра при смешении образовывали белый цвет.

   Скончался Джеймс Клерк Максвелл 5 ноября 1879 года в Кембридже

   Электромагнитная  картина мира.  

   Когда электрические заряды движутся друг относительно друга, появляется дополнительная магнитная сила. Поэтому общая эта сила, называется электромагнитной. Считается, что электрические силы соответствуют покоящимся зарядам, магнитные силы – движущимся зарядам. Все многообразие этих сил и зарядов описывается системой уравнений классической электродинамики(уравнения Максвелла.) Эти уравнения имеют решения, которые описывают электромагнитные волны, распространяющиеся со скоростью света. Из них можно получить решения для совокупности всех волн, которые могут распространяться в любом направлении в пространстве.

   Таким образом, были выдвинуты новые как физические, так и философские взгляды на материю, пространство, время и силы, во многом изменившие прежнюю механическую картину мира. Нельзя сказать, что эти изменения были кардинальны, так как они осуществились в рамках классической науки. Поэтому новую электромагнитную картину мира можно считать промежуточной, соединяющей в себе как новые идеи, так и старые механистические представления о мире.

   Новая картина мира требовала нового решения проблемы физического взаимодействия. Ньютоновская концепция дальнодействия заменялась фарадеевским принципом близкодействия. Он утверждал, что любые взаимодействия передаются полем от точки к точке, непрерывно и с конечной скоростью.

   Ньютоновская концепция абсолютного пространства и абсолютного времени не подходила к новым полевым представлениям о материи, так как поля не имеют четко очерченных границ и перекрывают друг друга. Кроме того, поля – это абсолютно непрерывная материя, поэтому пустого пространства просто нет. Так же и время должно быть неразрывно связано с процессами, происходящими в поле. Было ясно, что пространство и время должны перестать быть самостоятельными, независимыми oт материи сущностями. Но инерция мышления и сила привычки были столь велики, что еще долго ученые предпочитали верить в существование абсолютного пространства и абсолютного времени

   Не менялось в электромагнитной картине мира представление о месте и роли человека во Вселенной. Его появление считалось лишь капризом природы. Эти взгляды лишь упрочились после появления дарвиновской теории эволюции.

   Новая электромагнитная картина мира объяснила большой круг явлений, непонятных с точки зрения прежней механической картины мира. Она глубже вскрыла материальное единство мира, поскольку электричество, магнетизм, свет объяснялись на основе одних и тех же законов.

   Последовательное применение теории Максвелла к другим движущимся средам приводило к выводам о неабсолютности пространства и времени. Однако убежденность в их абсолютности была так велика, что ученые удивлялись своим выводам, называли их странными и отказывались от них. Именно так поступили X. Лоренц и А. Пуанкаре, чьи работы завершают до-эйнштейновский период развития физики.

   Таким образом, к концу XIX в. накапливалось все больше необъяснимых несоответствий теорий и опыта. Одни были обусловлены недостроенностью электромагнитной картины мира, другие вообще не согласовывались с континуальными представлениями о материи.

Тем не менее, об этих мелких неприятностях физики предпочитали не думать. Они считали, что как никогда близки к решению основной задачи науки – получению абсолютной истины, раскрытию всех тайн окружающего мира. Это позволило такому известному физику, как  
Г. Кирхгоф, в 80-х годах XIX в. заявить, что в физике не осталось ничего неизвестного и неоткрытого.

  Но даже создание теории относительности не могло спасти электромагнитной картины мира. С конца XIX в. обнаруживалось все больше непримиримых противоречий между электромагнитной картиной и фактами, что и послужило основанием для второй глобальной научной революции, которая разрушила не только существующую картину мира, но и все здание классической науки. В ходе этой революции начала складываться современная наука и новая квантово-релятивистская картина мира.


Информация о работе Электромагнитная картина мира