Космология

Автор работы: Пользователь скрыл имя, 06 Марта 2013 в 13:37, контрольная работа

Описание

КОСМОЛОГИЯ
-раздел астрономии и астрофизики, изучающий происхождение, крупномасштабную структуру и эволюцию Вселенной
этапы развития
Ранние формы космологии представляли собой религиозные мифы о сотворении (космогония) и уничтожении (эсхатология) существующего мира.

Работа состоит из  1 файл

КСЕ.docx

— 117.91 Кб (Скачать документ)

Например, в галактике М64 слились две  дисковые спиральные галактики с  разным направлением вращения. В итоге  возник газопылевой диск, вращающийся  в направлении, противоположном  вращению звездного диска.

Наша  Галактика также захватывает  карликовую галактику, находящуюся  на расстоянии всего в 60 тысяч световых лет. Через сотню миллионов лет звезды этой карликовой галактики станут звездами нашей Галактики. Магеллановы Облака также разрушаются, находясь неподалеку от нашей Галактики. По подсчетам астрономов в ближайшие несколько миллиардов лет Млечный Путь полностью поглотит все вещество Магеллановых Облаков.

Звездный  «каннибализм» – обычное явление в жизни галактик. Процессы поглощения галактик не сопровождаются катастрофическими звездными столкновениями, так как межзвездные расстояния очень велики по сравнению с размерами самих звезд. Однако процесс звездообразования может стать более эффективным, так как формируются массивные облака газа и под действием гравитации их скорости возрастают. Газ проникает к ядру галактики, именно поэтому среди взаимодействующих галактик довольно много систем с активными ядрами. Если при спокойной жизни вращение межзвездного газа в галактике препятствует его попаданию в центр, то  воздействие со стороны соседней галактики может сыграть решающую роль в продвижении газа к центру звездной системы. А этот газ является топливом для активного галактического ядра. 

 

3. Активные галактики.

Рассматривая  центральную часть, даже такой типичной  как наша, мы сможет наблюдать множество интересных явлений. На расстоянии 3-4 кпк от центра Галактики методами радиоастрономии обнаружен рукав нейтрального водорода, расширяющийся со скоростью около 50 км/с и содержащий около 108 масс Солнца. По другую сторону от центра Галактики на расстоянии около 2 кпк имеется рукав с массой, раз в 10 меньшей, удаляющийся от центра со скоростью 135 км/с. В центре балджа имеется диск из нейтрального и молекулярного водорода с радиусом в несколько сотен парсеков, который вращается со скоростью 200 км/с вокруг центра, и в области которого наблюдается усиление нетеплового синхротронного излучения, что говорит об увеличении напряженности магнитных полей.

В центральном сгущении туманности Андромеды  обнаружено быстро вращающееся ядро, похожее на шаровое звездное скопление. По-видимому, подобный объект имеется  и в центральном сгущении нашей  Галактики, где инфракрасными приемниками  излучения обнаружено эллиптическое  образование – размерами около 10 пк. Теперь мы уже знаем, что в центре этих галактик находятся гигантские черные дыры с массами в миллионы масс Солнца.

Области ядер других галактик также обладают рядом особых свойств. У многих галактик ядра оказываются источниками огромной энергии, которая не может быть объяснена  излучением обычных звезд. В некоторых  случаях мощность этих источников больше суммарной мощности излучения звезд  всей галактики, причем источник энергии  имеет исчезающее малый размер по сравнению с размером галактики. Ядра галактик, в которых происходит интенсивное выделение энергии, называются активными. Эта активность может проявляться в различных формах. В одних случаях это мощное электромагнитное излучение с переменностью в различных масштабах времени, источником которого является небольшой компактный объект в центре галактики с угловым размером не превышающим поперечник Солнечной системы. В других случаях наблюдается выброс вещества из ядер в межгалактическое пространство в виде пучков релятивистских частиц, излучающих радио  и рентгеновские волны синхротронным механизмом, или выброс облаков обычного газа со скоростью более десяти тысяч километров в секунду. Число галактик с активными ядрами составляет несколько процентов от числа нормальных галактик.

Особенно  часто среди них встречаются  так называемые сейфертовские галактики. Это массивные спиральные галактики, в центре которых наблюдается звездообразный источник очень малого углового размера. Спектр его излучения совсем не такой как у звезд. В спектре имеются чрезвычайно широкие эмиссионные линии различных химических элементы. Большая ширина линий объясняется очень высокой скоростью движения газа в ядре. Важной особенностью излучения ядер является их переменность: иногда светимость ядра заметно меняется за несколько месяцев, недель и даже дней. Это указывает на то, что размеры основного источника излучения очень малы. Расстояние между отдельными частями источника, синхронно меняющими яркость, не может быть больше того расстояния, которое свет проходит за несколько дней. В противном случае из-за различия времени распространения света быстрые колебания светимости окажутся сглаженными и не смогут наблюдаться. В столь небольшой области возникает излучение с мощностью до 1037 Вт!

Другой  разновидностью галактик с активными  ядрами являются радиогалактики. В отличие от сейфертовских, они обычно относятся к массивным эллиптическим галактикам и отличаются мощным радио и рентгеновским излучением, в десятки тысяч раз более интенсивным, чем излучение «нормальных» галактик. Ближайшая к нам радиогалактика находится в созвездии Центавра – радиоисточник Центавр А. Из центрального яркого рентгеновского источника, который вероятно является черной дырой с массой около миллиона масс Солнца идет мощный выброс вещества длиной в 30000световых лет. В настоящее время известно несколько тысяч галактик с нестационарными ядрами.  

 

4. Квазары.

В 1960 году ученые обратили внимание на звездообразные объекты, источники мощного радиоизлучения. После анализа спектров этих источников установили, что они находятся на расстоянии более миллиарда световых лет. Подобные объекты были названы квазарами (сокращение от «квазизвездный радиоисточник») или КЗО. Квазары находятся далеко за пределами Галактики. Размеры квазаров не превышают нескольких световых дней, то есть 1013–1014 м, а мощность излучения превышает мощность Солнца в триллион раз. Так квазар 3С9, находящийся на расстоянии 12 миллиардов световых лет, имеет светимость 1038 Вт. Для сравнения полная мощность излучения Галактики во всех диапазонах спектра – 4•1037 Вт. Общее количество квазаров ярче 20m звездной величины оценивают в сто тысяч.

Ряд особенностей КЗО указывает на их сходство с активными ядрами галактик. Однако, мощность выделения энергии  КЗО в сотни и тысячи раз  больше, чем у активных галактик. В настоящее время есть гипотеза, что квазары – ядра далеких  галактик на стадии необычно высокой  активности, когда их излучение столь  велико, что «забивает» излучение  самой галактики. Это подтверждается тем, что вокруг многих сравнительно близких КЗО удалось обнаружить свечение в области размером в  несколько десятков килопарсек, принадлежащее  галактикам, в ядрах которых находятся  КЗО. На изображениях многих квазаров, полученных на телескопе Хаббла, наглядно видны галактики, окружающие эти  объекты, как эллиптические, так  и спиральные.

Механизм  выделения огромного количества энергии ядрами галактик и квазарами  остается до конца не известным. Предполагается, что он связан с высвобождением гравитационной энергии. Среди активных галактик много  взаимодействующих. Предполагается, что  перераспределение межзвездного газа при столкновении галактик, и попадание  его в центр галактики превращает газ в горючее для активного  ядра. В настоящее время общепризнано, что в центре некоторых активных галактик находится сверхмассивные черные дыры, с массой в миллиарды  солнечных. По-видимому, активность ядра становится очень высокой в тех  случаях, когда вблизи черной дыры скапливается достаточное количество газа.

6. Крупномасштабная структура Вселенной.

Галактики редко бывают одиночными. 90 процентов галактик концентрируются в скопления, в которые входят от десятков до нескольких тысяч членов. Средний диаметр скопления галактик 5 Мпк, среднее число галактик в скоплении – 130.

Наша  Галактика не исключение, она входит в Местную группу галактик, размеры  которой 1,5 Мпк. Кроме нее к этой группе относятся Туманность Андромеды M31, Туманность Треугольника M33, неправильные и карликовые галактики – всего около сорока штук. По последним данным Местная группа движется со скоростью 635 км/с в сторону сверхгалактики М87 в созвездии Девы.

Скопления галактик, по-видимому, самые крупные  устойчивые системы во Вселенной. Скопления  сферической формы, состоящие из тысяч галактик, называются регулярными. В них чаще всего встречаются эллиптические галактики. Как правило, они являются сильными радиоисточниками. Одним из самых больших скоплений, содержащим 40 000 галактик, является скопление в созвездии Волосы Вероники. Оно находится от нас на расстоянии 100 Мпк. Скопление занимает на небе область диаметром около 10° и имеет размер 10 миллионов световых лет.

В иррегулярных скоплениях много спиральных галактик, но общее число галактик значительно меньше по сравнению с регулярными. Одно из них – скопление в созвездии Девы в 15 Мпк от Местной группы. Скопление Девы огромно: оно покрывает участок неба, в 200 раз превышающий площадь, занимаемую Луной. Одна только эллиптическая галактика M87 из этого скопления по размеру сравнима со всей нашей Местной группой.

Скопления галактик в свою очередь объединяются в сверхскопления. Исследование положения  галактик и их скоплений в области  диаметром в несколько сотен  мегапарсек позволили выявить крупномасштабную структуру Вселенной. Оказалось, что  области повышенной концентрации скоплений  галактик чередуются с пустотами  в сотни миллионов световых лет.  Галактики и их скопления образуют в пространстве подобие гигантских ячеек. Местная группа галактик расположена в сверхскоплении Девы. Другое сверхскопление находится в созвездии Геркулеса на расстоянии около 700 миллионов световых лет. Основное отличие сверхскоплений от больших скоплений заключается в том, что они не являются гравитационно связанными системами, т.е. между ними действует закон Хаббла, которому не подчиняются группы и скопления галактик.

Ячеистая  структура отражает картину распределения  вещества во Вселенной в эпоху, когда  галактик еще не существовало. Пространственной моделью структуры Вселенной  может служить кусок пемзы. В  целом она однородна, хотя в ней  есть и вещество и пузырьки воздуха. Так и во Вселенной: в небольших масштабах, например, в масштабах Галактики, вещество распределено неравномерно, но в масштабах сверхскоплений галактик  уже распределено практически равномерно.

Поскольку эпоха образования основной массы  галактик удалена от нашего времени  на миллиарды лет, молодые галактики  можно наблюдать только среди  очень далеких объектов. Из-за гигантского  расстояния мы видим эти галактики  в далеком прошлом, в эпоху  их молодости. Сравнивая их с относительно близкими галактиками, а значит значительно  более старыми, мы можем понять, как  они эволюционировали в течение  миллиардов лет своего существования.

 

3)Основные теории возникновения Вселенной

сентября 26, 2009

   

В.К. Зарипов

Космологическая модель Канта 

     Вплоть до начала ХХ века, когда возникла теория относительности Альберта Эйнштейна, в научном мире общепринятой была теория бесконечной в пространстве и во времени, однородной и статичной Вселенной. О безграничности Вселенной сделал предположение Исаак Ньютон (1642-1726), а философ Эммануил Кант (1724-1804) развил эту идею, допустив, что вселенная не имеет начала и во времени. Он объяснял все процессы во Вселенной законами механики, незадолго до его рождения описанными Исааком Ньютоном.

 
      Кант распространил свои умозаключения  и на область биологии, утверждая что бесконечно древняя, бесконечно большая Вселенная представляет возможность для возникновения бесконечного числа случайностей, в результате которых возможно возникновение любого биологического продукта. Эта философия, которой нельзя отказать в логике выводов (но не постулатов) явилась питательной почвой для возникновения дарвинизма, о котором речь пойдёт в статье II. 
      Наблюдения астрономов 18-19 веков за движением планет подтвердили космологическую модель Вселенной Канта, и она из гипотезы превратилась в теорию, а к концу 19 века считалась непререкаемым авторитетом. Этот авторитет не мог поколебать даже так называемый “парадокс тёмного ночного неба”. Почему парадокс? потому что в модели кантовской Вселенной сумма яркостей звёзд должна создавать бесконечную яркость, а ведь небо-то тёмное! Нельзя считать удовлетворительным объяснение поглощения части звёздного света облаками пыли, находящимися между звёздами, так как согласно законам термодинамики любое космическое тело со временем начинает отдавать столько энергии, сколько получает (однако, это стало известно только в 1960 году).

Модель  расширяющейся Вселенной 

     В 1915 и 1916 годах Эйнштейн опубликовал уравнения общей теории относительности (следует заметить, что к настоящему времени это наиболее полно и тщательно проверенная и подтверждённая теория). Согласно этих уравнений Вселенная не является статичной, а расширяется с одновременным торможением. Единственное физическое явление, которое ведёт себя подобным образом это взрыв, которому учёные дали название “Большой взрыв” или “горячий Большой взрыв”. 
      Но если видимая Вселенная является следствием Большого взрыва, то у этого взрыва было начало, была Первопричина, был Конструктор. Вначале Эйнштейн отвергал такой вывод и в 1917 г. выдвинул гипотезу о существовании некой “силы отталкивания”, прекращающей движение и сохраняющей Вселенную в статическом состоянии бесконечное время. 
      Однако американский астроном Эдвин Хаббл (1889-1953) в 1929 году доказал, что звёзды и звёздные скопления (галактики) удаляются друг от друга. Это, так называемое, “разбегание галактик” предсказано изначальной формулировкой общей теории относительности. 
      Перед лицом таких доказательств Эйнштейн отказался от гипотетической силы отталкивания и признал необходимость начала и присутствия Высшей первопричины возникновения Вселенной, которая, по его словам, обладает разумом и творческой силой, но не является личностью. Я не буду оспаривать последние слова Эйнштейна, с которыми христиане не согласятся, а поясню, почему он и многие другие выдающиеся современные учёные пришли к такому выводу.

Информация о работе Космология