Лазерные технологии и их применение

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 20:43, реферат

Описание

Лазер представляет собой источник монохроматического когерентного света с высокой направленностью светового луча. Само слово “лазер” составлено из первых букв английского словосочетания «Light Amplification by Stimulated Emission of Radiation», означающего усиление света в результате вынужденного излучения.

Содержание

Введение____________________________________________________2
1. Характеристики некоторых типов лазеров________________________3
2. Классификация лазеров по безопасности_________________________5
3. Краткий исторический обзор___________________________________6
4. Лазерная технология__________________________________________7
5. Основные свойства лазерного луча______________________________8
6. Применение лазеров _________________________________________9
а) Лазерный луч в роли сверла______________________________10
б) Лазерная резка и сварка _________________________________11
в) Голография ___________________________________________13
г) Применение лазеров в медицине__________________________14
д) Лазерное оружие_______________________________________16
е) Новейшие области применения лазеров____________________17
Заключение ________________________________________________20

Работа состоит из  1 файл

Лазерные технологии и их применение.doc

— 269.00 Кб (Скачать документ)

     Первые расчеты, касающиеся возможности создания  лазеров, и первые патенты относились главным образом к газовым лазерам, так как схемы энергетических уровней и условия возбуждения в этом случае более понятны, чем для веществ в твердом состоянии. Однако первым  был открыт рубиновый лазер. Успех выпал на долю американского физика Т. Меймана. В 1960 г. в двух научных журналах появилось его сообщение о том, что ему удалось получить на рубине генерацию излучения в оптическом диапазоне. Так мир узнал о рождении первого оптического квантового генератора – лазера на рубине. Первый образец лазера выглядел достаточно скромно: маленький рубиновый кубик (1x1x1 см), две противоположные грани которого имели серебряное покрытие (эти грани играли роль зеркал резонатора), периодически облучался зеленым светом от лампы-вспышки высокой мощности, которая змеей охватывала рубиновый кубик. Генерируемое излучение в виде красных световых импульсов испускалось через небольшое отверстие в одной из посеребренных граней кубика. В том же 1960 г. американским физикам А. Джавану, В. Беннету, Д. Эрриоту удалось получить генерацию оптического излучения в электрическом разряде в смеси гелия и неона. Так родился первый газовый лазер, появление которого было фактически подготовлено экспериментальными исследованиями В.А. Фабриканта и Ф.А. Бутаевой.

Последующие два года были насыщены большим количеством технических усовершенствований, направленных главным образом на достижение большей мощности и большей компактности этого типа лазера. Тем временем продолжались поиски новых длин волн и были открыты многие инфракрасные и несколько новых переходов в видимой области спектра. Наиболее важным из них является открытие Матиасом импульсных лазерных переходов в молекулярном азоте и в окиси углерода.           

   Следующим  наиболее  важным  этапом  в  развитии  лазеров  было открытие  Беллом  в конце 1963 г. лазера, работающего на  ионах ртути.  Хотя лазер на ионах ртути  сам по  себе не  оправдал первоначальных       надежд  на  получение  больших мощностей  в непрерывном   режиме  в  красной  и   зеленой  областях   спектра,  это открытие  указало  новые  режимы  разряда,   при  которых могут  быть  обнаружены   лазерные  переходы   в  видимой области  спектра.  Поиски  таких переходов  были проведены  также  среди  других  ионов. Вскоре  было обнаружено, что  ионы  аргона  представляют  собой  наилучший  источник  лазерных  переходов  с  большой  мощностью в  видимой области. В  результате дальнейших  усовершенствований  аргонового  лазера  в  непрерывном  режиме  была  получена  наиболее   высокая  мощность,  какая только  возможна в  видимой области. 

   Тем временем, технические усовершенствования лазеров быстро расширялись,  в результате  чего исчезли многие  ухищрения  первых  конструкций гелий-неоновых  и других  газовых  лазеров.  Исследования  таких  лазеров,  начатые  Беннетом, продолжались до  тех  пор,  пока не  был создан  гелий-неоновый лазер, который  можно  установить  на  обычном  столе  с полной уверенностью  в  том,  что  лазер  будет  функционировать так,  как  это  ожидалось  при  его  создании. 

 

   4. Лазерная технология

Лазерные технологические процессы  можно условно разделить на два вида. Первый из них использует возможность чрезвычайно тонкой  фокусировки лазерного луча и точного дозирования энергии, как в импульсном, так и в непрерывном режиме. В таких технологических процессах применяют лазеры  сравнительно невысокой средней мощности. С помощью последних были разработаны технология сверления тонких отверстий  в рубиновых и алмазных камнях для часовой промышленности и технология  изготовления фильеров для протяжки тонкой проволоки. Основная область применения маломощных  импульсных лазеров  связана с резкой и сваркой миниатюрных деталей в микроэлектронике и электровакуумной промышленности, с маркировкой миниатюрных деталей, автоматическим выжиганием цифр, букв, изображений для нужд полиграфической промышленности. 

В  последние  годы  в  одной  из  важнейших областей микроэлектроники - фотолитографии,  без  применения которой  практически  невозможно  изготовление  сверхминиатюрных  печатных плат,  интегральных схем  и других   элементов   микроэлектронной   техники, обычные источники  света  заменяются  на  лазерные. 

Второй вид лазерной технологии основан на применении лазеров с большой средней мощностью: от 1кВт и выше. Мощные лазеры используют в таких энергоемких технологических процессах, как резка и сварка толстых стальных листов, поверхностная закалка, наплавление и легирование крупногабаритных деталей, очистка зданий от поверхностей загрязнений, резка мрамора, гранита, раскрой тканей, кожи и других материалов. При лазерной сварке металлов достигается высокое качество шва и не требуется применение вакуумных камер, как при электроннолучевой сварке, а это очень важно в конвейерном производстве.

Мощная лазерная технология нашла применение в машиностроении, автомобильной промышленности, промышленности строительных материалов. Она позволяет не только повысить качество обработки материалов, но и улучшить технико-экономические показатели производственных процессов.

 

5. Основные свойства лазерного луча.

Лазеры являются уникальными источниками света. Их уникальность определяют свойства, которыми не обладают обычные источники света. В противоположность, например, обычной электрической лампочке, электромагнитные волны, зарождающиеся в различных частях оптического квантового генератора, удаленных друг от друга на макроскопические расстояния, оказываются когерентны между собой. Это значит, что все колебания в различных частях лазера происходят согласованно.

Другой замечательной чертой лазеров, тесно связанной с когерентностью их излучения, является способность к концентрации энергии - концентрации во времени, в спектре, в пространстве, по направлению распространения. Первое означает то, что излучение оптического генератора может длиться всего около сотни микросекунд. Концентрация в спектре предполагает, что ширина спектральной линии лазера очень узка. Это монохроматичность.

Для некоторых квантовых генераторов характерна чрезвычайно высокая степень монохроматичности их излучения. Любой поток электромагнитных волн всегда обладает набором частот. Излучение и поглощение атомной системы характеризуется не только частотой, но и некоторой неопределенностью этой величины, называемой шириной спектральной линии (или полосы). Абсолютно монохроматического одноцветного потока создать нельзя, однако, набор частот лазерного излучения чрезвычайно узок, что и определяет его очень высокую монохроматичность.

Мощность лазера. Лазеры являются самыми мощными источниками светового излучения. В узком интервале спектра кратковременно (в течение промежутка времени, продолжительностью порядка 10-13 с.) у некоторых типов лазеров достигается мощность излучения порядка 1017 Вт/см2, в то время как мощность излучения Солнца равна только 7*103 Вт/см2, причём суммарно по всему спектру.

Когда мы говорим о лазерном луче, то обычно представляем себе яркий и тонкий световой шнур или световую нить. Эту нить можно увидеть, если включить гелий-неоновый лазер. Правда, этот лазер маломощный - настолько, что его луч можно спокойно «ловить» в руку. К тому же луч не «ослепи­тельно белый», а сочного красного цвета. Чтобы он был лучше виден, надо создать в лаборатории полу­мрак и легкую задымленность. Луч почти не расши­ряется и везде имеет практически одинаковую интен­сивность. Можно разместить на его пути ряд зеркал и заставить его описать сложную изломанную траекто­рию в пространстве лаборатории. В результате возник­нет эффектное зрелище-комната, как бы «перечеркну­тая» в разных направлениях яркими красными прямы­ми нитями.

Однако не всегда лазерный луч выглядит столь эффектно. Например, луч СО2-лазера вообще неви­дим — ведь его длина волны попадает в инфракрасную область спектра. Кроме того, не следует думать, что лазерный луч - это обязательно непрерывный поток све­товой энергии. В большинстве случаев лазеры генери­руют не непрерывный световой пучок, а световые импульсы.

Гигантский импульс. Применительно к лазерным технологиям используется термин гигантский импульс. Таковым называют импульс, обладающей очень большой энергией при сверхмалой длительности.

Сама по себе идея создания гигантского импульса проста при использовании оптического затвора - специального устройства, которое по сигналу может переходить из открытого состояния в закрытое и наоборот. В открытом состоянии затвор пропускает через себя лазерное излучение, в закрытом - поглощает или отклоняет его в другую сторону. При создании гигантского импульса затвор переводят в закрытое состояние еще до того, как начнется высвечивание энергии накачки. Затем, по мере поглощения энергии активные центры (атомы, участвующие в генерации) переходят в массовом порядке на долгоживущий верхний уровень. Генерация в лазере пока не осуществляется, ведь затвор закрыт. В результате на рассматриваемом уровне накапливается чрезвычайно большое число активных центров. В определенный момент затвор переключают в открытое состояние. В некотором отношении это похоже на то, если бы высокая плотина, создававшая огромный перепад уровней воды, вдруг неожиданно исчезла. Происходит быстрое и очень бурное высвечивание активных центров, в результате чего и рождается короткий и мощный лазерный импульс - гигантский импульс. Его длительность составляет 10-8 с., а максимальная мощность 108 Вт.

Современная лазерная техника позволяет регулиро­вать длительность, энергию и даже форму лазерных импульсов. Регулируется и частота следования им­пульсов; это очень важно, так как от частоты следова­ния импульсов существенно зависит средняя мощность лазерного излучения.

 

6. Применение лазеров.

Прежде всего, следует отметить, что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер.

Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой мощностью, может обратимо изменять физические характеристики вещества, что приводит к различным нелинейно-оптическим явлениям.

Лазер дает возможность осуществлять сильную концентрацию световой мощности в пределах весьма узких частотных интервалов: при этом возможна также плавная перестройка частоты. Поэтому лазеры широко применяются для получения и исследования оптических спектров веществ. Лазерная спектроскопия отличается исключительно высокой степенью точности (высоким разрешением). Лазеры позволяют также осуществлять избирательное возбуждение тех или иных состояний атомов и молекул, избирательный разрыв определенных химических связей. В результате оказывается возможным инициирование конкретных химических реакций, управление развитием этих реакций, исследование их кинетики.

Пикосекундные лазерные импульсы дали начало исследованиям целого ряда быстропротекающих процессов в веществе и, в частности, в биологических структурах. Отметим, например, фундаментальные исследования процессов фотосинтеза. Эти процессы весьма сложны и, к тому же, протекают крайне быстро — в пикосекундной временной шкале. Использование сверхкоротких световых импульсов дает уникальную возможность проследить за развитием подобных процессов и даже моделировать отдельные их звенья.

При обсуждении практических применений лазеров обычно выделяют два направления. Первое направление связывают с применениями, в которых лазерное излучение (как правило, достаточно высокой мощности) используется для целенаправленного воздействия на вещество. Сюда относят лазерную обработку материалов (например, сварку, термообработку, резку, пробивание отверстий), лазерное разделение изотопов, применения лазеров в медицине и т. д. Второе направление связывают с так называемыми информативными применениями лазеров — для передачи и обработки информации, для осуществления контроля и измерений.

 

а) Лазерный луч в роли сверла.

Сверление отверстий в ча­совых камнях — с этого начиналась трудовая деятель­ность лазера. Речь идет о рубиновых камнях, которые используются в часах в качестве подшипников сколь­жения. При изготовлении таких подшипников требует­ся высверлить в рубине — материале весьма твердом и в то же время хрупком — отверстия диаметром всего 0,1-0,05 мм. Многие годы эта ювелирная операция выполнялась обычным механическим способом с ис­пользованием сверл, изготовленных из тонкой рояль­ной проволоки диаметром 40-50 мкм. Такое сверло делало до 30 тысяч оборотов в минуту и одновременно совершало при этом около ста возвратно-поступатель­ных перемещений. Для сверления одного камня требо­валось до 10-15 мин.

Начиная с 1964 г. малопроизводительное механи­ческое сверление часовых камней стало повсеместно заменяться лазерным сверлением. Конечно, термин «ла­зерное сверление» не надо понимать буквально; лазерный луч не сверлит отверстие — он его пробивает, вызы­вая интенсивное испарение материала. В настоящее время лазерное сверление часовых камней является обычным делом. Для этой цели применяются, в частности, лазеры на стекле с неодимом. Отверстие в камне (при толщине заготовки 0,5-1 мм) пробивается серией из нескольких лазерных импульсов, имеющих энергию 0,5-1 Дж. Производительность работы лазер­ной установки в автоматическом режиме —камень в секунду. Это в тысячу раз выше производительности механического сверления!

Лазер используется и при изготовлении сверхтонких проволок из меди, бронзы, вольфрама и других металлов. При изготовлении проволок применяют технологию протаскивания (волочения) проволоки сквозь отверстия очень малого диаметра. Эти отверстия высверливают в материалах, обладающих особо высокой твердостью, например, в сверхтвердых сплавах. Наиболее тверд, как известно, алмаз. Поэтому лучше всего протягивать тонкую проволоку сквозь отверстия в алмазе. Только они позволяют получить проволоку диаметром всего 10 мкм. Однако на механическое сверление одного отверстия в алмазе требуется 10 часов. Зато совсем нетрудно пробить это отверстие серией из нескольких мощных лазерных импульсов (см. рис.1). Как и в случае с пробивкой отверстий в часовых камнях, для сверления алмаза используются твердотельные импульсные лазеры.

Лазерное сверление широко применяется при получении отверстий в материалах, обладающих повышенной хрупкостью. В качестве примера можно привести подложки микросхем, изготовленные из глиноземной керамики (см. рис.2). Из-за высокой хрупкости керамики механическое сверление выполняется на “сыром” материале. Обжигают керамику уже после сверления. При этом происходит некоторая деформация изделия, искажается взаимное расположение высверленных отверстий. При использовании “лазерных сверл” можно спокойно работать с керамическими подложками, уже прошедшими обжиг.

Информация о работе Лазерные технологии и их применение