Образование Вселенной и Солнечной системы

Автор работы: Пользователь скрыл имя, 21 Декабря 2011 в 13:07, лекция

Описание

Наша Земля - одна из девяти планет Солнечной системы, а Солнце это рядовая звезда - желтый карлик, находящаяся в Галактике Млечного Пути, одной из сотен миллионов Галактик в наблюдаемой части Вселенной. Несмотря на то, что непосредственным объектом изучения геологии является планета Земля, нам необходимы знания и о других планетах, звездах, галактиках, т.к. все они находятся в определенном взаимодействии, начиная с момента их появления во Вселенной

Работа состоит из  1 файл

Лекция 1.doc

— 662.00 Кб (Скачать документ)

     Наиболее  известным элементом планеты  Сатурн являются его знаменитые кольца, образующие целую систему, находящуюся в плоскости экватора планеты. Диаметр колец составляет 270 тысяч км, а мощность всего 100 м ! Множество колец представляют собой мельчайшие кусочки льда воды, размером от см до нескольких метров. Каждое из колец имеет сложную структуру чередования темных и светлых полос, вложенных друг в друга. После изучения снимков с космических аппаратов, пролетевших вблизи колец Сатурна в сентябре 1979 г. и ноябре 1980 г., была выдвинута гипотеза, предполагающая, что в каждой светлой линии кольца находится один из мелких спутников Сатурна, с поверхности которого непрерывно испаряются частицы, наподобие “дыма”. Этот шлейф составляет темную часть колец. Таких мелких тел может насчитываться больше 1000, столько колец удалось различить на снимках. Кольца Сатурна хорошо отражают радиосигналы, что позволяет предполагать ферромагнитные частицы в “дыму” колец.

     У Сатурна насчитывается 17 спутников, из которых Титан самый большой. Средние по размерам от 420 до 1528 км спутники обладают шарообразной формой, а малые спутники имеют неправильную, угловатую форму и размеры от 20 до 360 км. Титан покрыт атмосферой из азота, метана и этана с давлением у поверхности планеты в 1,6 кг/см2, поэтому о ее строении ничего не известно. Ввиду низких температур, до -180 О С, метан может существовать в жидкой и твердой ( лед метана и этана ) форме.

     Предполагается, что под воздействием ультрафиолетового  излучения Солнца в верхних слоях атмосферы Титана из углеводородов могут образовываться сложные органические молекулы, которые опускаясь, достигают его поверхностим.

     Уран превосходит по своим размерам Землю в 4 раза и в 14,5 раз по массе. Это третья планета - гигант, вращается в сторону противоположной той, в которую вращаются большинство остальных планет. Мало этого, ось вращения Урана расположена почти в плоскости орбиты, так что Уран “лежит на боку” и вращается не “ в ту сторону”. Уран меньше Юпитера, но плотность, в среднем, у него близка к плотности Юпитера, что заставляет сомневаться в существовании оболочки из металлического водорода, т.к. давление слишком мало. В атмосфере Урана. как и на других планетах - гигантах, преобладают водород и гелий, но также присутствуют частицы льда метана. Уран окружен системой тонких колец, между которыми расстояние гораздо больше, чем у колец Сатурна. Из 15 спутников Урана 5 средних по размеру и 10 малых, обладающих угловатой формой и похожие на спутники Марса и малые спутники Юпитера и Сатурна.

     Нептун - самая маленькая из планет - гигантов, обладает, тем не менее, самой большой среди них плотностью, что обусловлено существованием силикатного ядра, окруженного оболочками из жидкого водорода, льда воды и мощной водородно-гелиевой атмосферой с облачным покровом, состоящим также из частиц льда воды, льда аммиака, льда метана и гидросульфида аммония. В атмосфере Нептуна, как и на Юпитере, просматриваются крупные вихревые структуры, изменчивые во времени. У Нептуна существует система колец, имеющих в разных участках различную мощность. 8 спутников Нептуна с одним крупным - Тритоном и 7-ю малыми, на поверхности которых имеются следы водо-ледяного вулканизма.

     И, наконец, Плутон, девятая планета, считая от Солнца, сильно отличается от планет-гигантов и, наверное, им не принадлежит. У Плутона очень вытянутая эллипсовидная орбита, пересекающая орбиту Нептуна при вращении Плутона вокруг Солнца. Разреженная атмосфера Плутона окружает ледяную поверхность планеты, состоящей из льдов азота, метана и моноокиси углерода, благодаря холоду - – 240 О С, господствующему на этой, самой дальней планете.

     Крупный спутник Харон (диаметр 1172 км ), состоит из смеси льда и силикатов с плотностью 1,8 г/см3 и в своем вращении вокруг Плутона на расстоянии 19405 км всегда обращен к планете одной и той же стороной.

     В настоящее время считается, что  Плутон с Хароном могут принадлежать т.н. поясу Койпера, расположенного в интервале 35-50 А.Е. прямо за орбитой Нептуна. В этом поясе находятся много мел размером от сотен км от 1 км до сотен км. 

  Астероиды, кометы  и метеориты. 

     Астероиды - космические твердые тела, обладающие размерами, близкими к размерам малых спутников планет, образующие скопления между орбитами Марса и Юпитера. Многие десятки тысяч астероидов имеют размеры порядка первых десятков км, но есть и крупные: Церера (1020 км диаметр), Веста (549 км), Паллада (538 км) и Гигея (450 км). При столкновениях между собой астероиды дробятся и порождают метеориты, падающие на поверхность Земли. По-видимому, большая часть астероидов состоит из 4-х видов пород, известных нам по составу метеоритов, это: 1) углистые хондриты, 2) класс S или обыкновенные хондриты, 3) класс М или железо-каменные и 4) редкие породы типа говардитов и эвкритов. О форме астероидов мы судим по снимкам с космического аппарата “Галилео”, на которых астероиды Гаспра (11х12х19 км) и Ида (52 км в поперечнике) имеют неправильную, угловатую форму и поверхность, испещренную кратерами. Плотность распределения кратеров позволяет предположить, что астероид Гаспра был отколот от более крупного тела примерно 200 млн. лет назад. Размещение пояса астероидов между Марсом и Юпитером вряд ли является случайным. На этой орбите, согласно закону планетных расстояний Тициуса-Боде2, должна была бы находиться планета, которой даже дали имя - Фаэтон, но она раздробилась на осколки, являющиеся астероидами. Эта идея была выдвинута еще в 1804 г. немецким астрономом Г.Ольберсом, но она не разделялась его великими современниками, В.Гершелем и П.Лапласом. Данное предположение сейчас считается наименее вероятным, а большим признанием пользуется идея О.Ю.Шмидта, заключающаяся в том, что астероиды никогда не принадлежали распавшейся планете, а представляют собой куски материала, образовавшиеся в результате процессов первичной аккреции газово-пылевых частиц. Их дальнейшее слипание оказалось невозможным из-за сильного гравитационного возмущения со стороны огромного Юпитера и уже сформировавшиеся крупные тела начали распадаться на более мелкие. Важно, что орбиты многих астероидов под влиянием гравитационных сил планет меняют свое положение. Особенно этому подвержены орбиты с большим эксентриситетом, а также обладающими большими углами наклона к плоскости эклиптики. Такие астероиды пересекают орбиту Земли и могут с ней столкнуться. Из геологической истории известны падения крупных космических тел на поверхность Земли, оставивших огромные кратеры - астроблемы (“звездные раны”) и сопровождавшиеся катастрофическими последствиями для биоты. Не исключена возможность столкновения астероида с Землей и в будущем, поэтому ученые озабочены расчетами уточнения орбит астероидов, которые могут пролететь вблизи Земли.

     Вечером 23 марта 1989 г. совсем рядом с нашей  планетой “просвистел” каменный астероид с поперечником около 800 м. И несмотря на то, что “рядом” означает расстояние в два раза большее, чем от Земли до Луны, с 1937 г., когда астероид Гермес пролетел примерно на таком же расстоянии, подобных происшествий не наблюдалось. Астрономы предсказывают, что астероид “1989FC” может вернуться и если он столкнется с Землей, то последствия будут равны одновременному взрыву 1000 водородных бомб. Вероятность столкновения с «бродячим» астероидом выше, чем возможная гибель в автокатострофе.

     Кометы представляют собой малые тела Солнечной системы, главная часть которых состоит из ядра, сложенного замерзшими газообразными соединениями, в которые вкраплены микронные пылевые частицы, и, т.н. комы - туманной оболочки, возникающей при сублимации ледяного ядра, когда комета приближается к Солнцу. У кометы всегда виден хвост, направленный в сторону, противоположную Солнцу (рис. 1.9.). Солнечный ветер уносит частицы комы, которая может в диаметре превышать 105 . Нередко хвост кометы достигает в длину 108 км, хотя его плотность невелика - 102 -103 ионов/ см3. В марте 1986 г. наши космические аппараты “Вега -1” и “Вега - 2 “ прошли вблизи головной части кометы Галлея и установили, что ее ядро представляет собой темное неправильное по форме тело, размером в поперечнике всего в несколько км (рис.1.10).

 

Рис. 1.8. Схема  строения кометы. Хвост кометы всегда направлен в сторону от Солнца 

     Движение  комет характеризуется эллиптическими орбитами с очень большим эксцентриситетом, что обеспечивает большие периоды обращения, а влияние планет изменяет эти орбиты и с долгопериодических (период обращения > 200 лет) они переходят на короткопериодические ( < 200 лет) орбиты. 

       

Рис. 1.9. Положение  кометы Галлея при сближении ее с  Землей в марте 1986 г. Схема

образования у нее плазменного хвоста (направлен  от Солнца), пылевого хвоста

(мельчайших  частичек пыли) и пылевого шлейфа (более крупных частиц

железосиликатной  пыли, рассеивающихся вдоль кометной орбиты) 

     Со  временем ледяное ядро кометы уменьшается, становится более рыхлым и оно может рассыпаться, образуя метеоритный поток. Знаменитый Тунгусский метеорит мог быть ледяным ядром кометы. Кометы блуждают по космическому пространству и могут то покидать Солнечную систему, то, наоборот, проникать в нее из других звездных систем.

     По  своему химическому составу кометы близки к планетам-гигантам и метеоритам типа углистых хондритов, о чем свидетельствует спектр комы комет. В апреле - мае 1997 г. жители Москвы и других городов России могли наблюдать великолепную комету Хейла-Боппа. В 1994 г. произошло столкновение обломков кометы Шумейкер-Леви с Юпитером и астрономы запечатлели огромную “дыру” в атмосфере Юпитера.

     О происхождении комет существует несколько гипотез, но наибольшей поддержкой пользуется гипотеза их конденсации из первичного протосолнечного газо- пылевого облака и последующего перемещения комет в пределы облака Оорта под влиянием гравитации Юпитера и других планет-гигантов. Количество комет в облаке Оорта оценивается в сотни миллиардов.

     Метеориты - твердые тела космического происхождения, достигающие поверхности планет и при ударе образующие кратеры различного размера. источником метеоритов является, в основном, пояс астероидов. Когда метеорит входит с большой скоростью в атмосферу Земли, его поверхностные слои разогреваются, могут расплавиться и метеорит “сгорит”, не достигнув Земли. Однако, некоторые метеориты падают на Землю и, благодаря, огромной скорости, их внутренние части не претерпевают изменений, т.к. зона прогрева очень мала. Размеры метеоритов колеблются от микрон до нескольких метров, весом в десятки тонн.

     Все метеориты по своему химическому  составу подразделяются на 3 класса: 1) каменные, наиболее распространенные, 2) железо-каменные и 3) железные.

     Каменные  метеориты являются наиболее распространенными (64,9 % от всех находок ). Среди них различают хондриты и ахондриты. Хондриты получили свое название благодаря наличию мелких сферических силикатных обособлений - хондр, занимающих более 50 % объема породы. Чаще всего хондры состоят из оливина, пироксена, плагиоклаза и стекла (рис.1.11). 

       

Рис. 1.10. Кварцевая хондра (диаметр около 2 мм) в кварц-железо-энстатиновой матрице

метеорита St.Mark (Кинг, 1979)

     Химический  состав хондритов позволяет предполагать, что они произошли из первичного, протопланетного вещества Солнечной системы, отражая его состав времени формирования планет, их аккреции. Это подтверждается сходством отношений основных химических элементов и элементов примесей для хондритов и в спектре Солнца. Содержание SiO2 в хондритах - меньше 45 %, сближает их с земными ультраосновными породами. Хондриты подразделяются по общему содержанию железа на ряд типов, среди которых наибольший интерес представляют углистые хондриты, содержащие больше всего железа, находящегося в силикатах. Кроме того, в углистых хондритах, присутствует много до 10% органического вещества, которое имеет, однако, не биогенное происхождение. Кроме минералов типа оливина, ортопироксена, пагиоклаза, типичных и для земных пород, в хондритах присутствуют минералы, встречающиеся только в метеоритах.

     Ахондриты не содержат хондр и по составу близки к земным магматическим ультраосновным породам. Ахондриты подразделяются на богатые Са (до 25 %) и бедные Са (до 3 %).

     Железные  метеориты по распространенности занимают второе место и представляют собой твердый раствор никеля в железе. Содержание никеля колеблется в широких пределах и на этом основано разделение метеоритов на различные типы. Самым распространенным типом являются октаэдриты с содержанием никеля от 6 до 14 %. Они характеризуются т.н. видманштеттеновой структурой, сложенной пластинами камасита (никелистое железо, Ni . 6%), расположенными параллельно граням октаэдра и заполняющими между ними пространство тэнитом (никелистое железо, Ni .30 %). Судя по тому, что в железных метеоритах хорошо выражены деформации ударного типа, метеориты испытывали

столкновения  и сильные удары (рис. 1.12).

     Железо-каменные метеориты по распространенности занимают третье место и состоят они как из никелистого железа, так и силикатного каменного материала, представленного, в основном, оливином, ортопироксеном и плагиоклазом. Этот силикатный материал вкраплен, как в губку никелистого железа, или наоборот, никелистое железо вкраплено в силикатную основу. Все это свидетельсвует о том, что вещество железо-каменных метеоритов прошло дифференциацию

     

Рис. 1.11. Образование метеоритов: 1 - газо-пылевое облако;

2 – аккреция в тела размером в метры (планетезимали); 3 - аккреция планетезималей в

тела  размером 10-200 км; 4 – плавление и дифференциация; 5 – базальты; 6 – силикаты; 7

– железо; 8 – дробление при ударе. Обломки: 9 – железо-каменные; 10 – каменные; 11

железные; 12 – крупный метеорит; 13 – дробление; 14 – метеорит более мелкий 

Информация о работе Образование Вселенной и Солнечной системы