Автор работы: Пользователь скрыл имя, 09 Декабря 2012 в 13:10, реферат
Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других массово применяемых машин используют также топливо на основе невозобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране. Доля солнечной, геотермальной энергии, энергии ветра, морских волн увеличивается значительными темпами, но продолжает составлять очень небольшую величину.
Национальный Исследовательский Университет
Московский Энергетический Институт
(Технический Университет)
Кафедра:
Реферат на тему:
«Основы атомно - водородной энерготехнологии. Процессы, параметры, эффективность, экономические затраты»
Группа: ФП-12-09
Студент: Медведева А.И.
Преподаватель: Кутько Н.Е.
Москва 2011г
Современная энергетика, как зарубежных стран, так и нашей страны, основана преимущественно на потреблении углеводородных энергоресурсов. Электростанции сжигают природный газ, мазут и уголь. Двигатели автомобилей, самолетов и других массово применяемых машин используют также топливо на основе невозобновляемых углеводородных природных ресурсов. В общем балансе потребляемой энергии только атомная и гидроэнергия составляют крупную долю — где-то около одной четверти в нашей стране. Доля солнечной, геотермальной энергии, энергии ветра, морских волн увеличивается значительными темпами, но продолжает составлять очень небольшую величину. Рассчитывать на существенные прорывы в этой области пока не приходится, хотя в целом ряде стран наметился большой прогресс. Так, Франция около 80% электроэнергии получает на АЭС, Исландия и Дания значительную долю электричества вырабатывают с помощью ветра и т. д.
Дальнейшее интенсивное развитие современной энергетики и транспорта ведет человечество к крупномасштабному энергетическому и экологическому кризису.
Стремительное сокращение запасов ископаемого топлива принуждает развитые страны принимать серьезные усилия по поиску альтернативных возобновляемых экологически чистых источников энергии.
Но в последние годы наметился инновационный поворот к использованию более эффективного энергоресурса — водорода.
Современные авиационные, ракетные и автомобильные двигатели, топливные элементы все чаще начинают возвращаться к частичному или полному использованию водорода. Водород обладает целым набором качеств, делающих сегодня его употребление выгодным: он имеет большую энергоэффективность и химическую активность, в результате его сгорания образуется вода, не обладающая токсичностью и не наносящая ущерба окружающей среде. Правда, есть и недостатки; главные из них — дороговизна производства и пожароопасность.
Водородная энергетика сформировалась как одно из направлений развития научно-технического прогресса более 30 лет назад. Работы по водородной энергетике во многих странах относятся к приоритетным направлениям социально-экономического развития и находят все большую поддержку со стороны как государства, так и частного бизнеса. Ведется активный поиск путей перевода большинства энергоемких отраслей промышленности, включая транспорт, на водородное топливо и электрохимические генераторы на основе использования топливных элементов (ТЭ).
Водородные топливные элементы считаются будущим мировой энергетики благодаря своей эффективности и экологической безопасности.
Использование водорода в качестве основного энергоносителя приведет к созданию принципиально новой водородной экономики, станет научно-техническим прорывом, сравнимым по своим социально-экономическим последствиям с тем революционным воздействием на развитие цивилизации, которое оказали электричество, двигатель внутреннего сгорания, химия и нефтехимия, информатика и связь.
Около 1000 фирм, компаний, концернов, университетских лабораторий, государственных и научно-технических объединений Запада уже много лет усиленно работают в различных направлениях водородной энергетики.
Учитывая существенный рост цен на энергоресурсы и серьезные экологические проблемы, некоторые страны уже приняли законы и государственные программы по изучению водородных технологий и широкому их применению. В их числе Исландия, США, Япония, ЕЭС.
В работы по ТЭ и энергетическим установкам на их базе ежегодно инвестируется свыше 500 млн.долл. США.
Наиболее динамично развиваются эти работы в США, Канаде и Японии, где наряду с большим объемом НИОКР, ведутся активные работы по коммерциализации водородной энергетики. Создано большое количество энергетических установок на топливных элементах мощностью от единиц ватт до мегаватт, уже сейчас конкурентоспособных с аналогичными установками, основанными на традиционных технологиях сгорания углеводородного топлива.
С прогрессом в области разработки энергоустановок на основе ТЭ связывается надежда на решение проблемы обеспечения человечества возобновляемыми экологически чистыми энергоресурсами, а также возможность изменения и совершенствования системы энергоснабжения (электро- и теплоснабжения) различных объектов - от сотовых телефонов, компьютеров и автомобилей до жилых домов, крупных промышленных предприятий и в целом городов.
В свободном состоянии и при нормальных условиях водород — бесцветный газ, без запаха и вкуса. Относительно воздуха водород имеет плотность 1/14. Он обычно и существует в комбинации с другими элементами, например, кислорода в воде, углерода в метане и в органических соединениях. Поскольку водород химически чрезвычайно активен, он редко присутствует как несвязанный элемент.
Охлажденный до жидкого состояния водород занимает 1/700 объема газообразного состояния. Водород при соединении с кислородом имеет самое высокое содержание энергии на единицу массы: 120.7 ГДж/т. Это — одна из причин, почему жидкий водород используется как топливо для ракет и энергетики космического корабля, для которой малая молекулярная масса и высокое удельное энергосодержание водорода имеют первостепенное значение.
При сжигании в чистом кислороде единственные продукты — высокотемпературное тепло и вода. Таким образом, при использовании водорода не образуются парниковые газы и не нарушается даже круговорот воды в природе.
Запасы водорода, связанного в органическом веществе и в воде, практически неисчерпаемы. Разрыв этих связей позволяет производить водород и затем использовать его как топливо. Разработаны многочисленные процессы по разложению воды на составные элементы.
При нагревании свыше 2500°С вода разлагается на водород и кислород (прямой термолиз). Столь высокую температуру можно получить, например, с помощью концентраторов солнечной энергии. Проблема здесь состоит в том, чтобы предотвратить рекомбинацию водорода и кислорода.
В настоящее время в мире большая часть производимого в промышленном масштабе водорода получается в процессе паровой конверсии метана (ПКМ). Полученный таким путем водород используется как реагент для очистки нефти и как компонент азотных удобрений, а также для ракетной техники. Пар и тепловая энергия при температурах 750-850°С требуются, чтобы отделить водород от углеродной основы в метане, что и происходит в химических паровых реформерах на каталитических поверхностях. Первая ступень процесса ПКМ расщепляет метан и водяной пар на водород и моноксид углерода. Вслед за этим на второй ступени «реакция сдвига» превращает моноксид углерода и воду в диоксид углерода и водород. Эта реакция происходит при температурах 200-250°С.
Начиная с 70-х годов прошлого века в стране были выполнены и получили необходимое научно-техническое обоснование и экспериментальное подтверждение проекты высокотемпературных гелиевых реакторов (ВТГР) атомных энерготехнологических станций (АЭТС) для химической промышленности и черной металлургии. Среди них АБТУ-50, а позднее — проект атомной энерготехнологической станции с реактором ВГ-400 мощностью 1060 МВт(т) для ядерно-химического комплекса по производству водорода и смесей на его основе, по выпуску аммиака и метанола, а также ряд последующих проектов этого направления.
Основой для проектов ВТГР
послужили разработки ядерных ракетных
двигателей на водороде. Созданные
в нашей стране для этих целей
испытательные
Высокотемпературные реакторы с гелиевым теплоносителем — это новый тип экологически чистых универсальных атомных энергоисточников, уникальные свойства которых — способность вырабатывать тепло при температурах более 1000°С и высокий уровень безопасности — определяют широкие возможности их использования для производства в газотурбинном цикле электроэнергии с высоким КПД и для снабжения высокотемпературным теплом и электричеством процессов производства водорода, опреснения воды, технологических процессов химической, нефтеперерабатывающей, металлургической и др. отраслей промышленности.
Одним из наиболее продвинутых в этой области является международный проект ГТ-МГР, который разрабатывается совместными усилиями российских институтов (ОКБМ, РНЦ «Курчатовский институт», ВНИИНМ, НПО «Луч») и американской кампании GA при управлении и финансировании со стороны Минатома РФ и DOE US. С проектом сотрудничают также кампании Фраматом и Фуджи электрик.
Рис. 1.
Модульный гелиевый реактор с паровой конверсией метана.
К настоящему времени разработан
проект модульного гелиевого реактора
для генерации электричества (с
КПД ~ 50%) с использованием прямого
газотурбинного цикла. Энергетическая
установка ГТ-МГР состоит из двух
связанных воедино блоков: модульного
высокотемпературного гелиевого реактора
(МГР) и газотурбинного преобразователя
энергии прямого цикла (ГТ). Работы
находятся на стадии технического проектирования
с экспериментально-стендовой
Рис. 2.Компоновка модульного гелиевого реактора в здании.
Термохимический процесс
получения водорода из воды использует
цикл реакций с химически активными
соединениями, например, соединениями
брома или йода, и проводится при
высокой температуре. Требуется
несколько стадий — обычно три, чтобы
выполнить полный процесс. Предложено
и рассматривается несколько
сотен возможных циклов. В ведущих
странах мира этому процессу уделяется
особое внимание как потенциально наиболее
эффективной технологии производства
водорода из воды с помощью ВТГР.
Такой цикл может быть построен и
на базе ПКМ, поскольку при паровой
конверсии метана половина водорода
производится не из метана, а из воды.
Довести в этом цикле долю водорода,
получаемого расщеплением воды, до
100% и, тем самым, полностью избежать
расхода метана можно, если получать
в качестве промежуточного продукта
метанол с последующим
Электролитическое разложение воды (электролиз). Электролитический водород является наиболее доступным, но дорогим продуктом. В промышленных и опытно-промышленных установках реализован КПД электролизера ~ 70-80% при плотностях тока менее 1 А/см2, в том числе для электролиза под давлением. Японские исследователи разработали экспериментальные мембранно-электродные блоки с твердополимерным электролитом, обеспечивающие электролиз воды с КПД (по электричеству) > 90% при плотностях тока 3 А/см2.
В мире лучшими из промышленных воднощелочных электролизеров считаются канадские, изготавливаемые корпорацией «Stuart Energy». Они стабильно в течение длительного, ресурса обеспечивают удельный расход менее 5 кВт • ч/нм3 H2, что делает их (при низкой стоимости потребляемой электроэнергии и мировых ценах на метан) конкурентоспособными с получением водорода конверсией природного газа с применением коротко-цикловой адсорбции. Кроме того, эти электролизеры позволяют изменять нагрузку в пределах от 3% до 100%, в то время как изменение нагрузки на электролизерах типа ФВ-500, приводит к существенному сокращению срока их работы.
Особый интерес представляет электролиз в сочетании с возобновляемыми источниками энергии. Например, Исследовательский центр Энергии Университета Гумбольта разработал автономную солнечно-водородную систему, которая использует фотоэлектрический элемент мощностью 9.2 кВт, чтобы обеспечить привод компрессоров для аэрации бассейнов рыборазведения, и биполярный щелочной электролизер мощностью 7.2 кВт, способный производить 25 л H2/мин. Система работает автономно начиная с 1993 г. Когда отсутствует солнечный свет, запасенный водород служит топливом для полуторакиловаттного ЭХГ, обеспечивающего привод компрессоров.
В Европе в конце XIX столетия сжигали топливо, называемое «городской, или синтез-газ» — смесь водорода и монооксида углерода (СО). Несколько стран, включая Бразилию и Германию, кое-где все еще применяют это топливо. Применяли водород и для перемещения по воздуху (дирижабли и воздушные шары), начиная с первого полета во Франции 27 августа 1784 г. Жака Шарля на воздушном шаре, наполненным водородом. В настоящее время многие отрасли промышленности используют водород для очистки нефти и для синтеза аммиака и метанола. Космическая система «Шаттл» использует водород как топливо для блоков разгона. Водород применяется и для запуска ракеты-носителя «Энергия», предназначенной для доставки на орбиту сверхтяжелых грузов, в частности, корабля «Буран».
Автомашины и камеры сгорания
летательных аппаратов