Пространство и время в современной научной картине мира

Автор работы: Пользователь скрыл имя, 22 Февраля 2013 в 11:13, реферат

Описание

Даже в античном мире мыслители задумывались над природой и сущностью пространства и времени. Так, одни из философов отрицали возможность существования пустого пространства или, по их выражению, небытия. Это были представители элейской школы в Древней Греции. А знаменитый врач и философ из г. Акраганта, Эмпедокл, хотя и поддерживал учение о невозможности пустоты, в отличие от элеатов утверждал реальность изменения и движения. Он говорил, что рыба, например, передвигается в воде, а пустого пространства не существует.

Содержание

Пространство и время в современной научной картине мира. ………
1.1. Развитие взглядов на пространство и время в
истории науки …………………………………………………………..…..…
1.2. Пространство и время в свете теории относительности А. Энштейна …..
2. Биосфера. Ноосфера. Человек. ………………………………………….…
2.1. Биосфера ……………………………………………………………………...
Литратура …………………………………………………………………….

Работа состоит из  1 файл

реферат готов Санёк.docx

— 154.22 Кб (Скачать документ)

Итак, в физике XIX в. появляется новое понятие — "поля", что, по словам Эйнштейна, явилось "самым  важным достижением со времени Ньютона". Открытие существования поля в пространстве между зарядами и частицами было очень существенно для описания физических свойств пространства и времени. Структура электромагнитного поля описывается с помощью четырех уравнений Максвелла, устанавливающих связь величин, характеризующих электрические и магнитные поля с распределением в пространстве зарядов и токов. Как заметил Эйнштейн, теория относительности возникает из проблемы поля.

Специального объяснения в рамках существовавшей в конце XIX в. физической картины мира требовал и отрицательный результат по обнаружению мирового эфира, полученный американским физиком А. Майкельсоном. Его опыт доказал независимость скорости света от движения Земли. С точки зрения классической механики, результаты опыта Майкельсона не поддавались объяснению. Некоторые физики пытались истолковать их как указывающие на реальное сокращение размеров всех тел, включая и Землю, в направлении движения под действием возникающих при этом электромагнитных сил.

Создатель электронной теории материи X. Лоренц вывел математические уравнения (преобразования Лоренца) для вычисления реальных сокращений движущихся тел и промежутков времени между событиями, происходящими на них, в зависимости от скорости движения.

Как показал позднее Эйнштейн, в преобразованиях Лоренца отражаются не реальные изменения размеров тел при движении (что можно представить лишь в абсолютном пространстве), а изменения результата измерения в зависимости от движения системы отсчета.

Таким образом, относительными оказывались и "длина", и "промежуток времени" между событиями, и даже "одновременность" событий. Иначе говоря, не только всякое движение, но и пространство, и время.

 

1.2. Пространство и врем,я в свете теории

относительности Эйнштейна

 

Специальная теория относительности, созданная в 1905 г. А. Эйнштейном, стала результатом обобщения и синтеза классической механики Галилея—Ньютона и электродинамики Максвелла—Лоренца. "Она описывает законы всех физических процессов при скоростях движения, близких к скорости света, но без учета поля тяготения. При уменьшении скоростей движения она сводится к классической механике, которая, таким образом, оказывается ее частным случаем”.

Если бы были найдены абсолютные пространство и время, а следовательно, и абсолютные скорости, то пришлось бы отказаться от принципа относительности, в соответствии с которым инерциальные системы равноправны. Создатель теории относительности сформулировал обобщенный принцип относительности, который теперь распространяется и на электромагнитные явления, в том числе и на движение света. Этот принцип гласит, что никакими физическими опытами (механическими, электромагнитными и др.), производимыми внутри данной системы отсчета, нельзя установить различие между состояниями покоя и равномерного прямолинейного движения. Классическое сложение скоростей неприменимо для распространения электромагнитных волн, света. "Для всех физических процессов скорость света обладает свойством бесконечной скорости. Для того чтобы сообщить телу скорость, равную скорости света, требуется бесконечное количество энергии, и именно поэтому физически невозможно, чтобы какое нибудь тело достигло этой скорости. Этот результат был подтвержден измерениями, которые проводились над электронами. Кинетическая энергия точечной массы растет быстрее, нежели квадрат ее скорости, и становится бесконечной для скорости, равной скорости света".

Скорость света является предельной скоростью распространения материальных воздействий. Она не может складываться ни с какой скоростью и для всех инерциальных систем оказывается постоянной. Все движущиеся тела на Земле по отношению к скорости света имеют скорость, равную нулю.

Замечательный русский поэт Л. Мартынов сказал об этом так.

Это почти неподвижности  мука, Мчаться куда-то со скоростью  звука, Зная при этом, что есть уже  где-то Некто, летящий со скоростью  света.

И в самом деле, скорость звука всего лишь 340 м/с. Это неподвижность по сравнению со скоростью света.

Из этих двух принципов  — постоянства скорости света  и расширенного принципа относительности  Галилея — математически следуют все положения специальной теории относительности (СТО). Если скорость света постоянна для всех инерциальных систем, а они все равноправны, то физические величины длины тела, промежутка времени, массы для разных систем отсчета будут различными. Так, длина тела в движущейся системе будет наименьшей по отношению к покоящейся. По формуле:

где /' — длина тела в  движущейся системе со скоростью V по отношению к неподвижной системе; / — длина тела в покоящейся системе.

Для промежутка же времени, длительности какого-либо процесса —  наоборот. Время будет как бы растягиваться, течь медленнее в движущейся системе  по отношению к неподвижной, в которой этот процесс будет более быстрым. По формуле:

Еще раз подчеркнем, что  эффекты специальной теории относительности будут обнаруживаться при скоростях, близких к световым. При скоростях значительно меньше скорости света формулы СТО переходят в формулы классической механики.

Э йнштейн попытался наглядно показать, как происходит замедление течения времени в движущейся системе по отношению к неподвижной. Представим себе железнодорожную платформу, мимо которой проходит поезд со скоростью, близкой к скорости света (см. рис. 1).

 

Рис. 1.

 

В точке а1 на платформе находится наблюдатель N1 (или прибор, фиксирующий эксперимент). На полу вагона в точке А размещен фонарик. Когда происходит совмещение точки А в вагоне с точкой а1 на платформе, фонарик включается, появляется луч света. Так как скорость его конечная, хотя и большая, то для того чтобы достигнуть потолка вагона, где расположено зеркало, и отразиться обратно, необходимо время, за которое поезд уйдет вперед.

Для наблюдателя в вагоне луч света пройдет путь 2АВ, а для наблюдателя на платформе — 2А С. Как видно из рисунка, чем больше скорость поезда, тем длиннее линия АС. Очевидно, что 2АС > 2АВ. Это как раз и говорит о замедлении течения времени внутри движущейся системы по отношению к неподвижной.

Необходимо подчеркнуть, что именно в отношении определенных пространственных координат изменяются отрезки длин и промежутки времени. Наблюдатель, находящийся внутри вагона, по своим часам, скажем, ждет полчаса. А по часам наблюдателя на платформе проходит значительно больше времени. Если, например, длина космического корабля в полете уменьшается в два раза с точки зрения наблюдателя на Земле, то при возвращении на Землю корабль сбавляет скорость и его длина становится такой, как и была при отлете.

Время же необратимо. Отсюда известный парадокс близнецов. После путешествия одного из близнецов на ракете, летевшей близко к скорости света, он с удивлением увидит, что его брат стал старше его. Можно даже рассчитать такой полет.

Представим себе, что с  Земли стартовал космический  корабль со скоростью 0,99 или 0,98 скорости света и вернулся обратно через 50 лет, прошедших на Земле. Но согласно теории относительности по часам корабля этот полет продолжался бы всего лишь год. Если космонавт, отправившись в полет в возрасте 25 лет, оставил на Земле только что родившегося сына, то при встрече 50-летний сын будет приветствовать 26-летнего отца.

Физиологические процессы здесь  совершенно ни при чем. Нельзя спрашивать, почему за один год сын космонавта состарился на 50 лет. Теория относительности доказала, что не существует ни абсолютного времени, ни абсолютного пространства. Сын постарел на 50 лет за годы, прожитые на Земле, в системе отсчета корабля время по отношению к земле другое'.

Релятивистское замедление является экспериментальным фактом. В космических лучах в верхних  слоях атмосферы образуются частицы, называемые пи-мезонами, или пионами. Собственное время жизни пионов — 10"8 с. За это время, двигаясь даже со скоростью, почти равной скорости света, они могут пройти не больше чем 300 см. Но приборы их регистрируют. Они проходят путь, равный 30 км, или в 10 000 раз больше, чем для них возможно. Теория относительности так объясняет этот факт: 10~8 с является естественным временем жизни мезона, измеренным по часам, движущимся вместе с мезоном, т. е. покоящимся по отношению к нему. Но в системе отсчета Земли время жизни мезона намного больше, и за это время пионы в состоянии пройти земную атмосферу.

Говоря об относительности  пространственных и временных величин  в разных системах отсчета, следует  помнить, что в теории относительности  мы наблюдаем неразрывную связь  относительного и абсолютного как одно из проявлений физической симметрии. Поскольку скорость света является абсолютной величиной, то и связь пространства и времени обнаруживается как некоторая абсолютная величина. Она выражается в так называемом пространственно-временном интервале по формуле . В каждой системе отсчета длина тела и временной промежуток будут различны, а эта величина останется неизменной. Увеличение длины будет соответствовать уменьшение промежутка времени в данной системе, и наоборот.

В общей теории относительности (ОТО), или теории тяготения, Эйнштейн расширяет принцип относительности, распространяя его на неинерциальные системы. В ней он также исходит из экспериментального факта эквивалентности масс инерционных и гравитационных, или эквивалентности инерционных и гравитационных полей.

Правда, принцип эквивалентности  справедлив только при строго локальных наблюдениях. Так, представим себе лифт, стоящий на Земле. Наблюдатель в лифте бросает два шара. Они будут двигаться по направлению к центру Земли и, следовательно, друг к другу. Если же мы будем тянуть лифт с ускорением § в пустоте, то те же шары будут двигаться параллельно друг другу (см. рис. 2).

Рис. 2.

 

Но несмотря на это ограничение, принцип эквивалентности играет важную роль в науке. Мы всегда можем  вычислить непосредственно действие сил инерции на любую физическую систему, и это дает нам возможность знать действие поля тяготения, отвлекаясь от его неоднородности, которая часто очень незначительна.

Расширение принципа относительности  на неинсрциальные «.'истемы, казалось бы, противоречит нашему обыденному опыту. Находясь внутри инерциальной системы, никаким экспериментом нельзя определить, движется она или покоится. Те, кто летал в самолете, знают, что в нем, как и на Земле, можно делать вес: пить чай, играть в мячик и т. п. Даже если посмотреть в иллюминатор, то увидишь, что самолет как бы висит неподвижно над облаками. Однако, когда самолет начинает сбавлять скорость и идет на посадку, пассажиры сразу же это замечают.

Эйнштейн предлагает провести мысленный эксперимент с лифтом, подвешенным над Землей. Наблюдатели, находящиеся внутри него, не смогут определить в некоторых ситуациях, находятся они в покое или в движении. Представим себе, что в какой-то момент времени канат, на котором подвешен лифт, обрывается, и наблюдатели в нем оказываются в состоянии свободного падения. В этом случае они не смогут определить, какое из двух противоположных утверждений будет истинным: 1) лифт движется в поле тяготения Земли; 2) лифт покоится в отсутствии поля тяготения. Если же в отсутствие поля тяготения Земли лифт будут тянуть вверх с ускорением §, то наблюдатели также не смогут выбрать истинное утверждение из двух противоположных: 1) лифт покоится в поле тяготения Земли; 2) лифт движется с ускорением в отсутствие поля тяготения.

Какие же следствия для  пространства и времени вытекают из общей теории относительности? Для  этого нужно обратиться вначале  к геометрии, которая возникла прежде всего как учение о физическом пространстве, измерении земельных площадей и строительных сооружений. Но уже в древности появилась теоретическая, аксиоматическая геометрия Евклида, которая оставалась единственной до XIX в. Правда, до конца XIX в. не делалось какого-либо различия между теоретической и физической геометрией.

С геометрией Евклида связывался тот взгляд, что пространство везде одно и то же. Она исходила из пяти аксиом или постулатов. Многих математиков не удовлетворял пятый постулат, который гласил, что из одной точки на плоскости можно пронесли только одну прямую, которая не будет пересекаться с джнип, сколько бы ее ни продолжали. Этот постулат не был очевиден, так как никто не мог бы его экспериментально подтвердить даже в воображении — нельзя же линию продолжать в бесконечность.

Ряд известных математиков  пытались доказать, что этот постулат на самом деле является теоремой, т. е. его можно вывести из четырех других. Но все их попытки оказались неудачными. Они так или иначе неявно предполагали тот же самый пятый постулат. Например, в той форме, что сумма углов треугольника равна двум прямым. Великий математик К. Гаусс первый поставил под сомнение возможность такого доказательства, т. е. признал, что постулат является аксиомой и, следовательно, его можно заменить другими аксиомами, построив новую геометрию. Но он на это не осмелился.

И лишь Н.И. Лобачевский в  России, Б. Риман в Германии и Я. Больяй в Венгрии построили новые  геометрии, отбросив пятый постулат и заменив его на другие. Б. Риман заменил его на аксиому, что через точку, лежащую вне данной прямой на плоскости, нельзя провести ни одной параллельной, все они будут пересекаться с данной. Н.И. Лобачевский и Я. Больяй допустили, что существует множество прямых, которые не пересекутся с данной.

Для пояснения отличия  этих геометрий возьмем пространство двух измерений, поверхность. Евклидова геометрия реализуется на плоскости, Римана — на поверхности сферы, на которой прямая линия выглядит как отрезок дуги большого круга, центр которого совпадает с центром сферы. Геометрия Лобачевского осуществляется на так называемой псевдосфере. Так как пространство имеет три измерения, то для каждой геометрии вводится понятие кривизны пространства. В евклидовой геометрии кривизна нулевая, у Римана — положительная, у Лобачевского—Больяя — отрицательная.

Поскольку постулат параллельности эквивалентен положению о сумме углов треугольника, то различие этих геометрий наглядно изображается на рисунке. В геометрии Евклида сумма углов треугольника равна 180°, у Римана — она больше, у Лобачевского — меньше. (Рис. 3, а, б, в соответственно).

Рис. 3.

 

Под кривизной пространства не нужно понимать искривление плоскости наподобие того, как искривлена поверхность евклидовой сферы, где внешняя поверхность отлична от внутренней. Изнутри ее поверхность выгладит вогнутой, извне — выпуклой. Если же брать плоскость в пространстве Лобачевского или Римана, обе ее стороны являются совершенно одинаковыми. Просто внутренняя структура плоскости такова, что мы измеряем ее с помощью некоторого коэффициента "кривизны". Кривизна пространства понимается в науке как отступление его метрики от евклидовой, что точно описывается в языке математики, но не проявляется каким-то наглядным образом.

Информация о работе Пространство и время в современной научной картине мира