Автор работы: Пользователь скрыл имя, 26 Декабря 2011 в 12:23, реферат
Очень трудно выделить точку зарождения естествознания. Уже в далекой древности люди пытались понять и объяснить себе природный мир. Знание его закономерностей было необходимо им прежде всего в практическом плане (подготовка к смене времен года, к сезонам засухи, дождей и разлива рек, знание признаков плодородности почв, климатических особенностей и так далее).
1. Античный период в истории естествознания
2. Клетка как структурная и функциональная единица живого. Состав и строение клетки
3. Учение Вернадского о биосфере
Список литературы
Тихоокеанский Государственный университет.
Развитие
естествознания в античный
период.
Реферат
по концепции современного естествознания.
Выполнила
студентка первого курса
Содержание
1. Античный период в истории естествознания
2. Клетка как структурная и функциональная единица живого. Состав и строение клетки
3. Учение Вернадского о биосфере
Список литературы
1. Античный период в
истории естествознания
Очень трудно выделить точку зарождения естествознания. Уже в далекой древности люди пытались понять и объяснить себе природный мир. Знание его закономерностей было необходимо им прежде всего в практическом плане (подготовка к смене времен года, к сезонам засухи, дождей и разлива рек, знание признаков плодородности почв, климатических особенностей и так далее). Так, «необходимость вычислять периоды подъема и спада воды в Ниле создала египетскую астрономию, а вместе с тем господство касты жрецов как руководителей земледелия» [7, стр. 522]. Египетские пирамиды (с XXVII в. до н.э.), британское языческое капище Стоунхендж, (1900 до н.э.) были воплощением замечательных знаний в математике, астрономии, геодезии, механике, строительном деле. Уже семь тысячелетий известен гномон (солнечные часы), пять тысяч лет назад в Египте появился учебник хирургии, примерно к тому же времени относятся месопотамские географические карты.
Были накоплены значительные знания в механике, медицине, ботанике, зоологии. Особое же место среди наук о природе занимала астрономия, удовлетворявшая в одинаковой степени как практические потребности, так и мировоззренческие запросы пытливого разума. Уже 1800 г. до н.э., при правителе Хаммурапи, в Вавилоне существовал обширный каталог звезд, а в VIII в. до н.э. была создана регулярная астрономическая служба. Астрономия давала постоянные импульсы математическим исследованиям, и именно наблюдения неба привели к тому, что в Вавилоне была принята не привычная для нас теперь система чисел, а числовая цепь, соответствующая угловому делению (1–60, 61-3600). Первые числовые символы обнаруживаются в письменных памятниках царства Урук (Междуречье), в минойской культуре о. Крит, в Мохенджо-Даро и Хараппе (III тысячелетие до н.э.). К началу III тысячелетия относятся геометрическое решение квадратных уравнений (Месопотамия, Греция), вычисления объемов геометрических фигур.
Особое место астрономии было обусловлено тем, что в ее задачи входили также астрологические прорицания, имевшие соответствующую «идейную базу». Для мышления древних народов характерны представления о единосущности всех элементов окружающего мира – людей, растений, животных, небесных тел. С этой точки зрения для понимания природных явлений подходили мерки человеческого поведения – то, что известно наилучшим образом. Это и было причиной антропоморфности картины мира в древние (и не только в древние) времена (от греч. антропос – человек, морфос – форма, т. е. по образу и подобию человека). Понятно тогда, почему то или иное расположение светил, направление ветров и так далее могли определять судьбу человека.
Не
в меньшей степени, чем практическим
потребностям, происхождение и развитие
науки обязано и
В поисках сил, управляющих миропорядком и обеспечивающих их устойчивость, у египтян, вавилонян, греков складывается «драматическая концепция природы» (Ф. Вензинк), в которой упорядоченность достигается ценой постоянного конфликта, столкновения множества сил, когда даже верховная сила вынуждена находиться в постоянной активности. Так, Солнце, верховное светило, неизменно появляется каждое утро, всякий раз преодолевая сопротивления мрака и хаоса, побеждая их и отвоевывая положенное ему место.
И в египетской, и в вавилонской мифоноэтике мир рождается из хаоса, благодаря действию упорядочивающих хаос сил. И опять же в древнеегипетской картине сотворения мира из хаоса, возникновения жизни из первобытной бездны Нун поступают аналогии, почерпнутые из наблюдений за Нилом. Для вавилонской же мифокосмогонии столь же характерен мотив периодического возвращения «первобытного» моря, хаоса, навеянный, мощными разливами Тигра и Евфрата, породившими и миф о всемирном потопе.
Условия аристократической Греции, с относительно мягким и гуманным рабовладельческим строем, были уникальными для создания натурфилософских систем, осмысливающих и описывающих мир как единое целое. Конечно, в них недостаток научных данных восполнялся полетом воображения. Этот путь породил не только «трех китов», на которых держится Земля, но и такие догадки, как представление об атомах.
В античных представлениях о природе отчетливо прослеживается путь «от мифа к логосу» (Ф. Кессиди), к поискам внутренних закономерностей и механизмов природных явлений, логики их взаимосвязей.
Так если у Гомера и Гесиода многие природные явления происходят по капризам и прихотям мстительных богов, то уже у философа Анаксимандра присутствует мотив «господства в мире космической справедливости, умеряющей борьбу противоположностей».
Перенесение на космос особенностей античного полиса происходило еще и вследствие характерного для греков взгляда на мир как на своего рода дом, дающий всем тварям прибежище и безопасность. Не случайно в центре этого космического дома помещалось Солнце как очаг, занимавший центральное место в любом греческом доме. Античный космос, хотя и огромный, ограничен в размерах. При этом он обладает чертами живого существа. Первые шаги представлений о природном мире сказываются в трактовке хаоса, который выступает не как бесформенное состояние, а как исходное условие существования всех вещей, их вместилище. В таком разверзающемся пространстве хаос имеет смысл природного первоначала.
Античная культура, начавшаяся как «прекрасный май, который цветет лишь однажды, и никогда более» (И. Гете), исчерпала себя и была смещена христианским Средневековьем [8, стр.39].
Современная клеточная теория включает следующие положения:
1. Все живые организмы состоят из клеток. Клетка – структурная, функциональная единица живого, основная единица строения и развития всех живых организмов, наименьшая единица живого;
2. Клетки всех
одноклеточных и
3. Размножение клеток
происходит путём их деления,
и каждая новая клетка
4. В сложных многоклеточных
организмах клетки
5. Клеточное строение
организмов – свидетельство
Клетка – элементарная живая система – основа строения и жизнедеятельности всех животных и растений. Клетки могут существовать как самостоятельные организмы (бактерии, простейшие) или в составе тканей многоклеточных животных, растений, грибов. Размеры клеток варьируют от 0,1 – 0,25 мкм (некоторые бактерии) до 155 мм (яйцо страуса в скорлупе).
Клетки обладают всей совокупностью свойств, необходимых для поддержания жизни: она осуществляет обмен веществ и энергии, растет, размножается и передает по наследству свои признаки, реагирует на внешние раздражители и способна двигаться. Она является низшей ступенью организации, обладающей всеми этими свойствами [4, стр.261]. Отдельные части клеток не могут выполнять весь комплекс жизненных функций, только совокупность структур, образующих клетку, проявляет все признаки живого. Поэтому только клетка является основной структурной и функциональной единицей живых организмов. У многоклеточных организмов разные клетки (например, нервные, мышечные, клетки крови у животных или клетки стебля, листьев, корня у растений) выполняют разные функции и поэтому различаются по структуре, однако они тесно и слаженно взаимодействуют друг с другом [2, стр. 30].
Несмотря на большое разнообразие и существенные различия во внешнем виде и функциях, все клетки состоят из трех основных частей – цитоплазматической мембраны, контролирующей переход вещества из окружающей среды в клетку и обратно, цитоплазмы с разнообразной структурой и клеточного ядра, содержащего носитель генетической информации. Все животные и некоторые растительные клетки содержат центриоли – цилиндрические структуры диаметром около 0,15 мкм, образующие клеточные центры. Обычно растительные клетки окружены оболочкой – клеточной стенкой. Кроме того, они содержат пластиды – цитоплазматические органоиды (специализированные структуры клеток), нередко содержащие пигменты, обусловливающие их окраску.
Окружающая клетку мембрана состоит из двух слоев молекул жироподобных веществ, между которыми находятся молекулы белков. Главная функция клетки – обеспечить передвижение вполне определенных веществ в прямом и обратном направлениях к ней. В частности, мембрана поддерживает нормальную концентрацию некоторых солей внутри клетки и играет важную роль в ее жизни: при повреждении мембраны клетка сразу гибнет, в то же время без некоторых других структурных компонентов жизнь клетки может продолжаться в течение некоторого времени. Первым признаком умирания клетки являются начинающиеся изменения в проницаемости ее наружной мембраны.
Внутри клеточной плазматической мембраны находится цитоплазма, содержащая водный солевой раствор с растворимыми и взвешенными ферментами, (как в мышечных тканях) и другими веществами. В цитоплазме располагаются разнообразные органеллы – маленькие органы, окруженные своими мембранами. К органеллам, в частности, относятся митохондрии – мешковидные образования с дыхательными ферментами. В них превращается сахар и высвобождается энергия. В цитоплазме есть и небольшие тельца – рибосомы, состоящие из белка и нуклеиновой кислоты (РНК), с помощью которых осуществляется синтез белка. Внутриклеточная среда достаточно вязкая, хотя 65 – 85 % массы клетки составляет вода.
Во всех жизнеспособных клетках, за исключением бактерий, содержится ядро, а в нем - хромосомы – длинные нитевидные тельца, состоящие из дезоксирибонуклеиновой кислоты и присоединенного к ней белка.
Не все клетки многоклеточного животного или растения одинаковы. Видоизменение клеток происходит постепенно в процессе развития организма. Каждый организм развивается из одной клетки – яйца, которое начинает делиться и в конечном итоге образуется множество отличающихся друг от друга клеток – мышечные, кровяные и др. Различия клеток определяются, прежде всего, набором белков, синтезируемых данной клеткой. Так клетки желудка синтезируют пищеварительный фермент пепсин; в других клетках, например, в клетках мозга, он не образуется. Во всех клетках растений или животных имеется полная генетическая информация для построения всех белков данного вида организмов, но в клетке каждого типа синтезируются лишь те белки, которые ей нужны [6, стр. 355].
3. Учение Вернадского
о биосфере
Учение о биосфере – области существования живого вещества на планете Земля – сложилось в результате проведенного В.И. Вернадским глубочайшего анализа всех явлений жизни в их взаимной связи между собой и косным веществом планеты на всем пути их исторического развития.
В.И.
Вернадский пришел к диалектическому
пониманию процессов под
Класс обратимых явлений и процессов соответствует законам сохранения современной физики. Но наряду с законами сохранения в обратимых процессах (равновесных) и явлениях, в окружающем нас мире наблюдаются явно необратимые процессы (неравновесные). Первые не обладают свойством эволюции, т.е. существуют как бы вне времени, для процессов второго типа характерно необратимое эволюционное развитие, тем не менее, они обладают двумя противоположными тенденциями эволюции. В явлениях неживой природы – эволюция в направлении роста энтропии или уменьшения свободной энергии. В явлениях же жизни наблюдается эволюционный процесс роста свободной энергии, что в историческом развитии человеческого общества выражается ростом производительности труда.
Информация о работе Развитие естествознания в античный период