Автор работы: Пользователь скрыл имя, 25 Февраля 2013 в 15:41, реферат
Солнечная система представляет собой группу небесных тел, весьма различных по своим размерам и физическому строению. В эту группу входят: Солнце, Девять больших планет, вместе с 61 спутником, более 100000 планет.
(астероидов), порядка десяти комет, а также бесчисленное множество метеорных тел движущихся как роями так и в виде отдельных частиц.
Все эти тела объединены в одну систему благодаря силе притяжения центрального тела - Солнца. Масса солнца приблизительно в 750 раз превосходит массу всех остальных тел, входящих в эту систему .
На последовательности, представленной на рис. 1, эти гипотетические объекты заняли бы промежуток между наиболее крупными из известных комет и ледяными спутниками планет-гигантов, располагаясь несколько выше астероидов аналогичного размера.
3)Жизнь на солнечной системе.
Проблема существования внеземной жизни на телах Солнечной системы остро интересует уже многие поколения не только профессионалов, но и многих жителей Земли. Прежде всего необходимо понять какие тела по условиям естественной среды могут претендовать на роль обители внеземной жизни. После того, как окончательно установилось мнение, что значительная часть кислорода в земной атмосфере (около 21%) является результатом деятельности биомассы, наличие кислорода в среде других тел стало одним из указаний на существование хотя бы примитивных форм живых организмов.
Летом 1995 г. с помощью спектрографа высокого разрешения, установленного на Космическом телескопе им. Хаббла, в ультрафиолетовой части спектра Европы были обнаружены детали, свойственные молекулярному кислороду. На этом основании был сделан вывод о наличии у Европы кислородной атмосферы, простирающейся до высот около 200 км. Конечно, общая масса этой газовой оболочки ничтожна. По оценкам, давление атмосферы у поверхности Европы составляет всего лишь 10-11 от давления земной атмосферы. С большой вероятностью кислород на Европе имеет небиологическое происхождение. По-видимому, существует процесс испарения незначительного количества водяного льда, которым, как упоминалось выше, покрыта поверхность Европы. Вероятной причиной может быть, например, микрометеоритная бомбардировка с последующим разложением молекул водного пара и потерей более легкого водорода. При температуре поверхности Европы около 130 К тепловые скорости молекул кислорода не столь велики, чтобы привести к быстрой диссипации газа, а постоянная подпитка парами воды способствует сохранению постоянной, хотя и сильно разреженной, атмосферы юпитерианского спутника.
Озон, обнаруженный примерно в то же время и с той же аппаратурой на другом спутнике Юпитера - Ганимеде, скорее всего имеет аналогичное по природе происхождение. Общая масса озона в предполагаемой кислородной атмосфере Ганимеда составляет не более 10% массы этого газа, ежегодно теряемой над южным полюсом Земли в области антарктической озонной дыры.
Пример ледяных спутников Юпитера показывает, что существенным условием развития организмов является соответствующая температура среды. По этому признаку из всех крупных планет может быть выделен только Марс (рис. 14).
Снимки Марса, полученные Космическим
телескопом им. Хаббла
Температурный режим
вблизи экватора этой планеты почти
приближается к условиям полярных или
высокогорных районов Земли. Давление
марсианской атмосферы у
Область марсианской поверхности
с ударными кратерами различного
возраста. В области кратера с вытянутыми
очертаниями видны характерные "наплывы",
возникающие в случае, когда происходит
ударное расплавление подповерхностных
льдов.
Вывод о возможном существовании жизни на Марсе, как известно, далеко не нов и широко пропагандировался еще во времена Дж. Скаипарелли и П. Лоувелла. Но столь очевидное свидетельство, как окаменелые бактерии, появилось впервые.
Если посещение окрестностей
Земли гипотетическими
Еще более невероятным выглядит присутствие на Земле 78,3 кг марсианского вещества также в виде отдельных осколков, выпавших на Землю. Некоторые из этих 12 метеоритов были найдены в разных частях земного шара еще в прошлом веке. По своим необычным характеристикам некоторые осколки - шерготтиты, наклиты и шассиньиты, получившие названия по местам первых находок, были отнесены к особой группе. В частности, все они имеют необычно поздний возраст кристаллизации - от 0,65 до 1,4 млрд. лет. Однако, настоящую известность эти космические пришельцы приобрели сравнительно недавно, когда было установлено, что типичный только для них изотопный состав редких газов с большой вероятностью указывает на их марсианское происхождение. Изотопные отношения являются очень стабильной характеристикой вещества и надежным указателем на его происхождение. А в августе 1996 г. достоянием научного мира стала сенсация, получившая небывало сильный общественный резонанс: Д. Мак-Кей с группой сотрудников Космического центра им. Джонсона объявил о наличии в одном из марсианских метеоритов окаменелых остатков древних микроорганизмов внеземного происхождения.
Метеорит ALH84001 весом 1930,9 г был найден в Антарктиде в 1984 г. По данным предварительных исследований сильное ударное воздействие этот фрагмент претерпел 16 млн. лет назад. По-видимому, эта временная отметка соответствует времени выброса камня за пределы Марса и началу его космического путешествия. В земную среду метеорит попал 13000 лет назад.
С помощью сканирующего электронного микроскопа удалось получить изображения внутренней структуры метеорита, на которых обнаружены детали характерной формы с размерами от 2х10-6 до 10х10-6 см. На рис. 16 показано изображение единичной окаменелости, а на рис. 17 - целой "колонии" древних марсианских бактерий.
Изображение
предполагаемой окаменелости марсианского
микроорганизма, полученное с помощью
сканирующего электронного микроскопа.
Группа микроокаменелостей, обнаруженных
внутри марсианского метеорита
Для доказательства биологического происхождения обнаруженных реликтов исследователи выстроили целую систему сопутствующих аргументов. В частности, они обратили внимание, что все эти структуры располагаются внутри карбонатовых глобул (отложений карбонатов, окислов, сульфидов и сульфатов железа), возраст которых составляет 3,6 млрд. лет, то есть несомненно относится ко времени пребывания метеорита в марсианской среде. Кроме того, изотопный состав кислорода и углерода, образующих минералы глобул, однозначно соответствует изотопным характеристикам марсианских аналогов этих газов, определенных непосредственно на Марсе приборами космических аппаратов "Викинг" в 1976 г. Наконец, в земных условиях органические соединения, подобные тем, что обнаружены вокруг микроокаменелостей, являются продуктами жизнедеятельности и последующего разложения погибших древних бактерий. Обращающим на себя внимание отличием земных и марсианских бактерий являются их сравнительные размеры. Бактерии Земли в 100 - 1000 раз крупнее своих марсианских аналогов. Это обстоятельство является существенным с точки зрения микробиологии, поскольку в таком малом объеме не могут поместиться все клеточные механизмы, необходимые с земной точки зрения для нормальной жизнедеятельности, в частности, структура ДНК. Удовлетворительного объяснения этому не найдено и пока приходится довольствоваться тем соображением, что у древних марсианских бактерий могли быть свои понятия о нормальной жизнедеятельности.
Таким образом, в настоящий момент реально известная нам внеземная жизнь представлена лишь единственным свидетельством - окаменевшими реликтами бактерий с возрастом более 3 млрд. лет.
Заключение
Солнечная система — планетная система, включающая в себя центральную звезду — Солнце — и все естественные космические объекты, вращающиеся вокруг неё.
Большая часть массы объектов, связанных с Солнцем гравитацией, содержится в восьми относительно уединённых планетах, имеющих почти круговые орбиты и располагающихся в пределах почти плоского диска — плоскости эклиптики. Четыре меньшие внутренние планеты: Меркурий, Венера, Земля и Марс, также называемые планетами земной группы, состоят в основном из силикатов и металлов. Четыре внешние планеты: Юпитер, Сатурн, Уран и Нептун, также называемые газовыми гигантами, в значительной степени состоят из водорода и гелия и намного массивнее, чем планеты земной группы.
В Солнечной системе имеются две области, заполненные малыми телами. Пояс астероидов, находящийся между Марсом и Юпитером, сходен по составу с планетами земной группы, поскольку состоит из силикатов и металлов. Крупнейшими объектами пояса астероидов являются Церера, Паллада и Юнона. За орбитой Нептуна располагаются транснептуновые объекты, состоящие из замёрзших воды, аммиака и метана, крупнейшими из которых являются Плутон, Седна, Хаумеа, Макемаке и Эрида. Дополнительно к тысячам малых тел в этих двух областях другие разнообразные популяции малых тел, таких как кометы, метеороиды и космическая пыль, перемещаются по Солнечной системе.
Шесть планет из восьми и три карликовые планеты окружены естественными спутниками. Каждая из внешних планет окружена кольцами пыли и других частиц.
Солнечный ветер (поток плазмы от Солнца) создаёт пузырь в межзвёздной среде, называемый гелиосферой, который простирается до края рассеянного диска. Гипотетическое облако Оорта, служащее источником долгопериодических комет, может простираться на расстояние примерно в тысячу раз больше по сравнению с гелиосферой.
Солнечная система входит в состав галактики Млечный Путь.
В Солнечной системе
живут самые разнообразные
Список используемой литературы