Уравнение Максвелла

Автор работы: Пользователь скрыл имя, 08 Июня 2011 в 19:32, реферат

Описание

Джеймс Клерк Максвелл - английский физик, создатель классической электродинамики, один из основателей статистической физики, организатор и первый директор Кавендишской лаборатории.

Содержание

Введение
Глава 1 Биография Джеймса Клерка Максвелла
Глава 2 Теория уравнения Максвелла
Заключение
Список литературы

Работа состоит из  1 файл

Министерство образования и науки Российской Федерации!!!!!!!!!!!!!!!!!.docx

— 58.38 Кб (Скачать документ)

     К лондонскому времени относятся  основные исследования Максвелла в  области электромагнитной теории света.

     В работе «О физических силовых линиях», опубликованной четырьмя частями в 1861 и 1862 годах в одном из журналов, он продолжил математическо-физические исследования силовых линий Фарадея, начатые им шесть лет назад, и привел их к предварительному завершению. Максвелл пришел при этом к заключению, что электрические действия распространяются с конечной скоростью, соответствующей скорости света в пустом пространстве. Эта его работа уже содержит знаменитые уравнения электромагнетизма, включая уравнения для движущихся тел.

     В 1831, в год рождения Максвелла, М.Фарадей  проводил классические эксперименты, которые привели его к открытию электромагнитной индукции. Максвелл приступил к исследованию электричества  и магнетизма примерно 20 лет спустя, когда существовали два взгляда  на природу электрических и магнитных  эффектов. Такие ученые, как А. М. Ампер и Ф.Нейман, придерживались концепции дальнодействия, рассматривая электромагнитные силы как аналог гравитационного  притяжения между двумя массами. Фарадей был приверженцем идеи силовых  линий, которые соединяют положительный  и отрицательный электрические  заряды или северный и южный полюсы магнита. Силовые линии заполняют  все окружающее пространство (поле, по терминологии Фарадея) и обусловливают  электрические и магнитные взаимодействия. Следуя Фарадею, Максвелл разработал гидродинамическую  модель силовых линий и выразил  известные тогда соотношения  электродинамики на математическом языке, соответствующем механическим моделям Фарадея. Основные результаты этого исследования отражены в работе «Фарадеевы силовые линии» (Faraday’s Lines of Force, 1857). В 1860—1865 Максвелл создал теорию электромагнитного поля, которую сформулировал в виде системы уравнений (уравнения Максвелла), описывающих основные закономерности электромагнитных явлений: 1-е уравнение выражало электромагнитную индукцию Фарадея; 2-е — магнитоэлектрическую индукцию, открытую Максвеллом и основанную на представлениях о токах смещения; 3-е — закон сохранения количества электричества; 4-е — вихревой характер магнитного поля.

     Продолжая развивать эти идеи, Максвелл пришел к выводу, что любые изменения  электрического и магнитного полей  должны вызывать изменения в силовых  линиях, пронизывающих окружающее пространство, т.е. должны существовать импульсы (или  волны), распространяющиеся в среде. Скорость распространения этих волн (электромагнитного возмущения) зависит  от диэлектрической и магнитной  проницаемости среды и равна  отношению электромагнитной единицы  к электростатической. По данным Максвелла  и других исследователей, это отношение  составляет 3Ч1010 см/с, что близко к  скорости света, измеренной семью годами ранее французским физиком А.Физо. В октябре 1861 Максвелл сообщил Фарадею  о своем открытии: свет — это  электромагнитное возмущение, распространяющееся в непроводящей среде, т.е. разновидность  электромагнитных волн. Этот завершающий  этап исследований изложен в работе Максвелла «Динамическая теория электромагнитного поля» (Treatise on Electricity and Magnetism, 1864), а итог его работ по электродинамике подвел знаменитый Трактат об электричестве и магнетизме (1873).

     Во  время своей лондонской профессуры Максвелл лично познакомился с Фарадеем, который уже читал его публикации и в письмах к нему высоко оценивал их. Но общение с Фарадеем не могло  более повлиять на его научное  развитие. Максвелл еще студентом  основательно проработал результаты исследований великого экспериментатора и ко времени  встречи с 70-летним ученым имел уже  сложившиеся воззрения на проблемы физики.

     Так как Максвелл не располагал институтом при высшей школе, он оборудовал лабораторию  на чердаке своего дома в благоустроенном  жилом квартале на западе Лондона. Его  жена помогала ему в экспериментах. Максвелл был очень умелым и необычайно находчивым экспериментатором.

     Из-за плохого состояния здоровья Максвелл в 1865 году был вынужден отказаться от преподавания. Его родовое поместье Гленлэр в Шотландии позволяло  ему полностью посвятить себя исследованиям в качестве независимого, свободного от академических обязанностей ученого.

     Шесть лет Максвелл провел в деревне. В  это время он продолжал свои теоретические  и экспериментальные работы и  подготавливал обширные труды, которые  потом, в 70-е годы, стали выходить один за другим. Приглашение стать  ректором старейшего шотландского университета в Сент-Эндрью он отклонил. Но все  же Максвелл становится университетским  преподавателем в третий раз.

     Кембриджский  университет в 1871 году решает создать  профессуру по экспериментальной физике и оборудовать учебную лабораторию. Руководство университета обратилось к 40-летнему частному ученому из Шотландии, и в конце концов его  удалось склонить принять новую  кафедру.

     Наряду  с обязанностями лектора Максвелла  ожидала большая организаторская  работа. Новая лаборатория должна была быть построена и оборудована  по его желаниям, предложениям и  планам, в соответствии с мировым  уровнем экспериментальной физики. При оборудовании Кавендишской лаборатории  – она была названа по имени  мецената, который был дальним  родственником гениального естествоиспытателя Генри Кавендиша, – нашли свое применение технические знания и  практический опыт Максвелла, полученные им смолоду под руководством отца. Позднее везде, где была возможность, он осматривал мастерские и фабрики.

     Только  десятилетия спустя могла быть осуществлена планомерная совместная работа естествоиспытателей, которая сегодня является предпосылкой научно-технического прогресса. Сам  Максвелл еще был гениальным исследователем-одиночкой, как до него Фарадей и после  него другие известные ученые, среди  них Герц, Рентген» Планк и Эйнштейн.

     Кавендишская  лаборатория положила в Англии начало традиции исследований в области  экспериментальной физики. Это имело  большое значение для дальнейшего  развития международной экспериментальной  физики, и особенно для подготовки атомного века. После Максвелла ею руководили такие исследователи, как  Рэлей, Дж. Дж.Томсон и Резерфорд, укрепившие и умножившие ее славу. Многие физики-атомщики в молодые годы совершенствовали в Кавендишской лаборатории свое образование, в их числе Макс Борн, Нильс Бор, П.Л.Капица.

     За  время своей профессуры в Кембридже  Максвелл опубликовал немало значительных работ. В 1871 году появилась «Теория  теплоты», в 1873 году вышел фундаментальный  двухтомный учебник – «Трактат по электричеству и магнетизму». В  этом труде Максвелл собрал и обобщил  результаты своих исследований электромагнетизма. В маленькой работе «Субстанция  и движение» (1876), которая была задумана как введение в изучение физической науки, он в простейшей форме, не прибегая к высшей математике, сообщает читателю основы классической физики.

     Начиная с 1875 года Максвелл много времени  и сил потратил на расшифровку  и издание оставшихся рукописей  Генри Кавендиша. Работам по теории электричества он уделял при этом особое внимание.

     Благодаря его склонности к занятиям историей естествознания по крайней мере часть  научного архива великого английского  естествоиспытателя второй половины XVIII века, который сам опубликовал лишь немногое, стала достоянием потомства.

     Жизнь этого необычайно плодотворного  исследователя, объединившего в  себе гениального теоретика и  изобретательного экспериментатора, оборвалась неожиданно быстро. Ученый не придавал значения небольшому расстройству пищеварения, приведшему к серьезному заболеванию, от которого он скончался 5 ноября 1879 года на 49-м году жизни. 
 
 
 
 
 
 

     Заключение 

     Говорили о том, что имя Максвелла «блещет на вратах классической физики». Максвелл действительно был блистательным явлением среди физиков нового времени. Своими научными трудами, особенно великолепной системой формул электродинамики, он заложил важнейшие основы физики атомного века.

     Его теория электричества и света  настолько опередила свое время  и была так законченна, что полвека  спустя Эйнштейн мог почти без  изменений включить ее в свою теорию относительности.

     Работы  Максвелла посвящены электродинамике, молекулярной физике, общей статистике, оптике, механике, теории упругости. Наиболее весомый вклад Максвелл сделал в  молекулярную физику и электродинамику. В кинетической теории газов, одним  из основателей которой он является, установил в 1859 году статистический закон, описывающий распределение  молекул газа по скоростям (распределение  Максвелла). В 1866 году он дал новый  вывод функции распределения  молекул по скоростям, основанный на рассмотрении прямых и обратных столкновений, развил теорию переноса в общем виде, применив ее к процессам диффузии, теплопроводности и внутреннего  трения, ввел понятие релаксации. В 1867 году первый показал статистическую природу второго начала термодинамики ("демон Максвелла"), в 1878 году ввел термин "статистическая механика".

     Самым большим научным достижением  Джеймса Максвелла является созданная  им в 1860-1865 годах теория электромагнитного  поля, которую он сформулировал в  виде системы нескольких уравнений (уравнения Максвелла), выражающих все  основные закономерности электромагнитных явлений (первые дифференциальные уравнения  поля были записаны Максвеллом в 1855-1856 годах). В своей теории электромагнитного  поля Максвелл использовал (1861) новое  понятие - ток смещения, дал (1864) определение  электромагнитного поля и предсказал (1865) новый важный эффект: существование в свободном пространстве электромагнитного излучения (электромагнитных волн) и его распространение в пространстве со скоростью света. Последнее дало ему основание считать (1865) свет одним из видов электромагнитного излучения (идея электромагнитной природы света) и раскрыть связь между оптическими и электромагнитными явлениями. Максвелл теоретически вычислил давление света (1873), предсказал эффекты Стюарта-Толмена и Эйнштейна-де Гааза (1878), скин-эффект.

     Ученый  также сформулировал теорему  в теории упругости (теорема Максвелла), установил соотношения между  основными теплофизическими параметрами (термодинамические соотношения  Максвелла), развивал теорию цветного зрения, исследовал устойчивость колец  Сатурна, показав, что кольца не являются твердыми или жидкими, а представляют собой рой метеоритов. Максвелл сконструировал ряд приборов. Он был известным  популяризатором физических знаний. Опубликовал впервые (1879) рукописи работ  Генри Кавендиша

     Максвелл  был крупным популяризатором  науки. Он написал ряд статей для  Британской энциклопедии, популярные книги - такие как "Теория теплоты" (1870), "Материя и движение" (1873), "Электричество в элементарном изложении" (1881), переведённые на русский  язык. Важным вкладом в историю  физики является опубликование Максвеллом рукописей работ Г. Кавендиша  по электричеству (1879) с обширными  комментариями. 

 

Список  литературы:

  1. Фейнман P., Характер физических законов. Библиотечка «КВАНТ», Выпуск 62. — М.: Наука, Изд. второе, исправленное, 2007;
  2. А. А. Чубур.,К раткий курс истории естествознания Брянск, —М.: Издательский комплекс БФ МГСУ,2008;
  3. Волков Г. Три лика культуры. – М.: Молодая гвардия, 2010;
  4. Дягилев Ф.М. Концепции современного естествознания. - М.: Изд. ИЭМПЭ, 2008;
  5. Дубнищева Т.Я. Концепции современного естествознания. – Новосибирск: ЮКЭА, 2007;
  6. Красилов В. Эволюция, Дарвин и современность. – «Знание –Сила», №2,2010;
  7. Найдыш В.М. Концепции современного естествознания. М.: Гардарики, 2009;
  8. Порус В. И все-таки знание – сила. - «Знание –Сила», №1, 2005;
  9. Солопов Е.Ф. Концепции современного естествознания. – М.:Владос, 2008;
  10. Рузавин Г.И. Концепции современного естествознания. – М.: ЮНИТИ, 2007;
  11. Сноу Ч.П. Две культуры. М. “Прогресс”, 2009.

Информация о работе Уравнение Максвелла