Автор работы: Пользователь скрыл имя, 14 Марта 2012 в 18:42, доклад
Энзимодиагностика, безусловно, является важной и актуальной для современной медицины и науки, так как биохимические исследования, белкового спектра, активности ферментов в крови и других биологических жидкостей, которые осуществляются в этой области, способствуют выявлению причин, приводящих к различным патологиям, и помогают предотвратить или ослабить их неблагоприятное действие на организм.
1. Понятие энзимодиагностики……………………………………………………..с.3
2. Причины, приводящие к количеству ферментов в крови………………………с.4
3. Основные ферменты, используемые в клинической диагностике……………..с.5
4. Список использованной литературы……………………………………………..с.15
Активность КК-ВВ в крови отмечали во время аортокоронарного шунтирования. Полагают, что активность КК-ВВ может быть тестом аноксии тканей. Активность КК-ВВ в крови может также быть следствием гипоксического повреждения мозга, особенно в условиях перинатальной гипоксии. Активность КК-ВВ увеличена у 53% новорожденных с асфиксией. КК-ВВ присутствует в гладкой мускулатуре, но не определяется в сыворотке крови лиц с доброкачественными заболеваниями этих тканей. Одним из возможных объяснений повышения активности КК-ВВ в крови при сосудистых операциях служит предположение, что стенки вен, как, впрочем, и аорты, содержат только одну изоформу КК, а именно КК-ВВ. Активность изофермента КК-ВВ может быть повышена в крови при раке предстательной железы, мелкоклеточном раке легкого, аденокарциноме желудка, лейкозах, хронической почечной недостаточности, передозировке миорелаксантов. Метастазирование рака предстательной железы сопровождается особенно высокими цифрами активности КК-ВВ в крови. Исследователи сходятся во мнении, что активность КК-ВВ может быть использована как неспецифический маркер опухолевого процесса.
В ряде случаев при инфаркте миокарда, а иногда и в его отсутствие высокая активность КК сохраняется неопределенно долго. Наблюдаемые явления обусловлены циркуляцией в крови необычных форм КК и ее изоферментов. После разделения при ЭФ фракций КК на электрофореграмме становятся видимыми полосы, не соответствующие положению полос КК-ММ, КК-МВ и КК-ВВ, и можно отметить наличие изоформ КК, движущихся к катоду, что из белков сыворотки крови свойственно иммуноглобулинам. Известно, что окисление сульфгидрильных групп КК изменяет электрофоретическую подвижность молекул, однако при этом они по-прежнему движутся к аноду. У больных метастазирующим раком предстательной железы выделен изофермент КК, мигрирующий между КК-МВ и КК-ВВ.
3.6. Лактатдегидрогеназа (ЛДГ)
Лактатдегидрогеназа (ЛДГ; L-лактат-НАД-оксидоредуктаза, КФ 1.1.1.27) - цинксодержаший фермент, катализирует обратимую реакцию восстановления пировиноградной кислоты в молочную кислоту при участии НАД-Н2.
Фермент в кристаллической форме был получен из мышцы сердца. Подобным же образом были получены кристаллические ферментные препараты из скелетных мышц и печени. При рН 7,0 равновесие реакции смещено в сторону образования лактата, в щелочной среде реакция проходит в обратном направлении. ЛДГ может также реагировать с НАДФ в качестве кофермента, но значительно медленнее, чем с НАД.
ЛДГ - тетрамер; два локуса генов кодируют синтез двух олигомеров — М- и Н-субъединиц. М-субъединица синтезируется главным образом в тканях с анаэробным метаболизмом, в то время как Н-субъединица присутствует в тканях с преобладанием аэробных процессов. Молекулярная масса каждой субъединицы составляет 35 кДа, каждого тетрамера - 140 кДа. Полипептидная цепь обеих субъединиц содержит 330 аминокислотных остатков; различия в их последовательности в субъединицах обнаружены на протяжении более чем 25% длины полипептидной цепи. В тетрамерной структуре ЛДГ субъединицы связаны силами ионных и водородных взаимодействий. На каждой субъединице расположен каталитический центр; диссоциация тетрамера на димеры или мономеры приводит к потере ферментативной активности.
В цитоплазме клеток и сыворотке крови ЛДГ имеет 5 изоферментов, обозначаемых в соответствии с их подвижностью к аноду в электрическом поле: ЛДГ1 (НННН), ЛДГ2 (НННМ), ЛДГ3, (ННММ), ЛДГ4 (НМММ) и ЛДГ5 (ММММ). ЛДГ, участвует в окислении лактата в пируват в тканях с аэробным типом метаболизма (миокард, мозг, почки, эритроциты, тромбоциты). ЛДГ5 оптимизирована природой для превращения пирувата в лактат в тканях с высоким уровнем гликолиза (скелетные мышцы, печень). Не все изоферменты ЛДГ гомогенны: при электрофоретическом разделении изоферментов ЛДГ сыворотки и эритроцитов в полиакриламидном геле обнаружено расщепление ЛДГ3 на две полосы, которое позволяет предположить синтез двух форм ЛДГ3 в тканях. Наличие молекулярных структур двух форм, подтвержденное в реакции с антисывороткой, объясняют различием пространственного (цис и транс) расположения Н-субъединиц и М-субъединиц в тетрамере.
В тканях человека активность ЛДГ на 1 г сухой массы уменьшается в последовательности: почки - скелетная мышца – поджелудочная железа — селезенка — печень — плацента. Изоферменты ЛДГ, и ЛДГ2 преобладают в эритроцитах, лейкоцитах, миокарде, почках, ЛДГ4 и ЛДГ5 — в печени, скелетных мышцах, неопластических тканях, наиболее высокое содержание ЛДГ3 отмечают в лимфоидной ткани, тромбоцитах и опухолях.
Свойства изоферментов ЛДГ определены особенностями входящих в них субъединиц. Изоферментам ЛДГ присущи разные кинетические характеристики: рН, при котором они проявляют максимальную активность, сродство к субстратам и кофакторам.
Клиническое значение определения активности ЛДГ
Активность ЛДГ в сыворотке крови повышается при многих патологических состояниях, поэтому для дифференциальной диагностики заболеваний более целесообразно исследовать изменения спектра изоферментов ЛДГ. В настоящее время накоплено большое количество данных о распределении изоферментов ЛДГ в тканях и об изменении спектра изоферментов ЛДГ в сыворотке крови при различных заболеваниях. Изоферментный спектр скелетной мускулатуры показывает преобладание ЛДГ5. При мышечной дистрофии отмечены увеличение более подвижных изоферментов ЛДГ и снижение активности ЛДГ5, что характерно и для многих нейромышечных заболеваний. Причиной изменения спектра изоферментов может быть быстрое удаление малоподвижных изоферментов из циркуляции. Активность ЛДГ5 в сыворотке крови — чувствительный индикатор гепатоцеллюлярного поражения, увеличение его активности обычно наблюдают при гепатите, гипоксии печени (включая застой крови в печени вследствие сердечной недостаточности), лекарственной интоксикации, циррозе, опухолях и травме. Активность ЛДГ в сыворотке крови не повышается при хронических заболеваниях почек и уремии, но иногда возрастает после гемодиализа или плазмафереза, что может быть объяснено удалением из крови ингибиторов (мочевина, оксалаты).
Общая активность ЛДГ при инфаркте миокарда наиболее значительно повышается в течение первых 2 сут после приступа стенокардии и до исходного уровня понижается медленно, в течение 14-16 дней, эпизодическое повышение ЛДГ можно отметить и в более поздние сроки.
Активность ЛДГ подвержена гормональному влиянию. Большие дозы тироксина снижали синтез фермента, при этом в большей мере отмечено ингибирование синтеза субъединицы М. Норадреналин и адреналин вызывают увеличение общей активности ЛДГ с преобладанием активности ЛДГ1, и ЛДГ2. Активность фермента в крови возрастает при действии анаболических стероидов и этанола, а также ряда медикаментозных препаратов — клофибрата, кофеина, сульфаниламидов и др.
Спектр изоферментов ЛДГ может меняться при неопластических процессах. В таких случаях его трудно интерпретировать, так как источником изоферментов ЛДГ служит не только неопластическая ткань, но и ткани, разрушаемые метастазами. Однако изоферментный спектр транссудатов при опухолевом поражении сходен с таковым сыворотки крови, тогда как в воспалительных экссудатах преобладает активность ЛДГ1 и ЛДГ2. Для ЛДГ, как и для других ферментов, при опухолевом процессе характерен синтез изоферментов, свойственных эмбриональным тканям. Недифференцированные эмбриональные ткани имеют спектр изоферментов ЛДГ, в котором преобладают ЛДГ2 и ЛДГ3, а также ЛДГ4. В злокачественных опухолях обнаружено три вида распределения изоферментов ЛДГ. Увеличение содержания ЛДГ4 и ЛДГ5 выявлено при опухолях предстательной железы, матки, молочных желез, желудка, толстой кишки, мочевого пузыря и некоторых типах опухолей мозга. У больных лейкозом, злокачественной лимфомой, нейробластомой, феохромоцитомой, а также при опухолях полости рта, раке бронхов и некоторых типах опухолей мозга увеличена активность ЛДГ2, ЛДГ3, ЛДГ4. Увеличение активности ЛДГ, отмечено в сыворотке крови больных с некоторыми типами опухолей мозга и разными типами опухолей половых органов.
Возможность повышения активности ЛДГ, при опухолевом процессе следует учитывать при диагностике инфаркта миокарда. Иногда при опухолях мозга, раке пишевода, нейробластоме отмечают необычную дополнительную полосу при ЭФ сыворотки крови и ткани опухоли. Определение спектра изоферментов ЛДГ в сыворотке крови при онкологических заболеваниях полезно не только для диагностики, но и для контроля эффективности лечения. Обнаружено, что нормализация спектра изоферментов ЛДГ коррелирует с успешностью ответа больного на лечение.
Наличие осложнений при инфаркте миокарда и сопутствующие заболевания могут изменить спектр ЛДГ и активность ЛДГ. Выявление спектра изоферментов, характерного для инфаркта миокарда, возможно при застое крови в печени и почках вследствие сердечной недостаточности, при ишемическом поражении некоторых органов из-за резкого снижения сердечного выброса. При эмболии легочной артерии, которую в ряде случаев приходится дифференцировать с инфарктом миокарда, увеличение в крови активности ЛДГ2 и ЛДГ3 может быть объяснено выходом ферментов из тромбоцитов, патологией печени, вызванной венозной гипертензией, анемией коркового слоя надпочечников и почек. Поскольку эти нарушения не всегда удается различить, изменение спектра изоферментов ЛДГ интерпретировать непросто.
В сыворотке крови тяжелобольных (как правило, в терминальном состоянии) методом ЭФ на ацетате целлюлозы выявляется дополнительная полоса, более близкая к катоду, чем ЛДГ5, названная ЛДГ6. Во всех наблюдениях в тканях печени, скелетных мышцах, почке, селезенке и надпочечниках также отмечено присутствие ЛДГ6; в ряде случаев появление этой фракции носило транзиторный характер, ЛДГ6 не обнаружена в тканях миокарда. Считают, что нет нозологической формы заболевания, для которой характерна ЛДГ6, но есть тяжелые клинические состояния, обусловливающие ее появление, к которым следует отнести выраженный ацидоз, гипотонию и сепсис.
3.7.Щелочная фосфатаза (ЩФ)
Щелочная фосфатаза (ЩФ) - фосфогидролаза моноэфиров орто-фосфорной кислоты (КФ 3.1.3.1) - гидролизует разные синтетические субстраты при оптимуме рН, равном 10,0; субстрат фермента in vivo точно не известен. ЩФ - гликопротеин; по структуре это димер с кажущейся значительной вариацией молекулярной массы фермента в разных тканях. ЩФ - металло-фермент, в состав активного центра фермента входит атом цинка. Полагают, что атом цинка повышает активность фермента, обеспечивая конформационные изменения и гидролиз моноэфиров ортофосфорной кислоты. Каждый мономер ЩФ содержит три металлосвязывающих центра. Лишенный ионов цинка фермент теряет активность, но восстанавливает ее после добавления металла. Активность фермента возрастает в присутствии ионов магния, для оптимальной активности необходимо определенное соотношение ионов магния и цинка.
ЩФ присутствует во всех органах человека; наиболее высокая удельная активность фермента обнаружена в эпителии тонкой кишки, эпителии канальцев почек, остеобластах, гепатоцитах и плаценте- фермент плотно связан с клеточной мембраной гидрофобным карбоксильным концом полипептидной цепи; гидрофобный конец цепи идентичен у всех изоферментов ЩФ. ЩФ прикреплена к плазматической мембране с помощью фосфатидилинозитолгликанового якоря. Молекулы ЩФ на поверхности плазматической мембраны располагаются неравномерно.
Молекулярная масса ЩФ составляет 130-220 кДа. Ассоциация ЩФ с гликозаминогликанами (нейраминовой кислотой) может изменить не только молекулярную массу фермента, но и заряд молекулы и ее подвижность в электрическом поле. Степень гликозилирования ЩФ в тканях может влиять на ее термолабильность.
В организме человека биосинтез фермента кодируют три гена: один — печеночный, костный и почечный изоферменты, другой — кишечный изофермент и третий — плацентарную ЩФ. Полагают, что существует и 4-й ген, кодирующий синтез зародышевой ЩФ. Последняя локализована в тонкой кишке плода примерно до 30 недель беременности. Эмбриональные и зрелые формы ЩФ сходны по каталитической активности. Выделение ЩФ из ткани печени с помощью фосфатидилинозитолспецифическо
Клиническое значение определения активности ЩФ.
Повышение активности ЩФ в сыворотке крови не всегда позволяет с достаточной степенью достоверности составить представление об органотопической патологии.
В клинической биохимии активность ЩФ наиболее часто используют в диагностике патологии гепатобилиарной системы и костной ткани. Активность ЩФ сыворотки крови часто повышена при обструктивных заболеваниях печени, холестазе, гепатите, явлениях гепатотоксичности, болезни Педжета, остеомаляции, новообразованиях, вовлекших в патологический процесс печень и костную ткань.
Низкая или даже неопределяемая активность ЩФ отмечена при гепатолентикулярной дегенерации. Механизм этого феномена неясен, предполагают, что ион меди конкурирует с цинком за место в активном центре ЩФ, что ведет к резкому падению активности фермента. Применение гиполипидемических препаратов, в частности клофибрата, также ингибирует фермент.
У недоношенных детей с целью ранней диагностики рахита рекомендовано определять активность ЩФ.
Исследование активности ЩФ у больных с синдромом гипофосфатазии указывает на важную роль ЩФ в процессах минерализации костной ткани. Синдром гипофосфатазии - врожденное заболевание костной ткани, характеризующееся избирательной недостаточностью синтеза ЩФ. У пациентов с подобной патологией в тканях и сыворотке крови значительно снижена активность печеночного, костного и почечного изоферментов ЩФ при нормальной активности плацентарного и кишечного изоферментов. Другая особенность заболевания - накопление в крови и моче фосфорсодержащих комплексов, служащих эндогенным субстратом ЩФ. К ним относят фосфоэтаноламин, пирофосфат, П-5-Ф и т. д. Заболевание вызвано точечными мутациями гена, кодирующего синтез фермента.
Повышение активности ЩФ происходит не только в условиях активного роста костной ткани, но и при ее разрушении - остеопорозе и последующей остеомаляции. При тяжелом остеопорозе и остеомаляции активность ЩФ в сыворотке крови может быть нормальной или слабо повышенной (в 2—3 раза). Остеомаляция, верифицированная гистологически, может протекать при нормальной активности ЩФ.
Активность ЩФ в сыворотке крови может быть повышена при остеомиодистрофии, развивающейся как осложнение длительного гемодиализа. При введении циклоспорина после трансплантации повышенная активность ЩФ в большей мере зависит от токсического влияния препарата на гепатоциты и в меньшей мере связана с патологией остеобластов. У пациентов с гиперпаратиреозом активность ЩФ сыворотки крови обычно в пределах нормы, но при развитии остеопороза, особенно остеонекроза, может быть значительно увеличена.