-трансплантатам;
-назначавшимся
лекарственным средствам;
-посещениям
врачей;
-планируется
внедрение чет-карт с памятью более 2 кБ
вместо 256 Б.
Система "Dent
Card" предоставлена совместным российско-германским
предприятием для внедрения и апробации
в стоматологии. В систему "Dent Card"
входят: персональные чип-карты для врачей
и пациентов (карты с микросхемами памяти
256 кБ), устройство чтения/записи, оборудование
персонализации – дисплей, процессор,
клавиатура, принтер.
Возможности системы "Dent Card": работа
регистратуры по заполнению карты пациента,
информация об общем статусе пациента,
регистрация операций и учета расхода
при их проведении материалов и медикаментов,
оформление нарядов для зуботехнической
лаборатории. Структура системы "Dent
Card" следующая: программа состоит из
7 разделов. Для удобства использования
на «рабочем столе» они представлены в
виде папок:
-информация
о пациенте (анкетные данные);
общая документация:
-контакты с
врачами;
-регулярно
используемые медикаменты;
-аллергии;
-перенесенные
и сопутствующие заболевания;
-стоматологическая
документация;
-документация
по материалам;
-профилактика,
рентгенологические исследования;
-учет посещений.
Необходимо
учитывать, что большинство стоматологов
не владеют свободно компьютером. Многие
компьютерные программы составлены
по достаточно сложной системе «раскрытия
папок», либо имеют очень большой
объем, и чтобы овладеть ими, необходима
время и наработка определенных
навыков. Система "Dent Card" рассчитана
на не владеющих компьютером стоматологов.
Работа ведется в Windows интерфейсе, что
очень удобно для пользователя. В "Dent
Card" все папки расположены в привычном
для врача виде – как листки в обыкновенной
амбулаторной карте. Врачу- стоматологу
достаточно их просто «пролистать», чтобы
ознакомиться со всей информацией о пациенте
или просто распечатать их на принтере.
Использование "Dent Card" дает возможность
автоматизировать сделки между медицинским
учреждением и страховой компанией. В
перспективе возможна модернизация обмена
информации между стоматологическими
клиниками – сбор, хранение, обработка.
Кроме того, компьютерная система "Dent
Card" отвечает большинству требований
работы современной российской стоматологической
клиники и поможет решить многие административные
задачи, что значительно улучшит качество
лечебного процесса и снизит расходы на
его осуществление.
7.
ИСПОЛЬЗОВАНИЕ УЛЬТРАЗВУКА
В МЕДИЦИНЕ
Рождение
ультразвука
В 1880 году французские
физики, братья Пьер и Поль Кюри, заметили,
что при сжатии и растяжении кристалла
кварца с двух сторон на его гранях,
перпендикулярных направлению сжатия,
появляются электрические заряды. Это
явление было названо пьезоэлектричеством
(от греческого «пьезо» – «давлю»), а материалы
с такими свойствами – пьезоэлектриками.
Позже это явление объяснили анизотропией
кристалла кварца – разные физические
свойства вдоль разных граней. Во время
первой мировой войны французский исследователь
Поль Ланжевен предложил использовать
пьезоэлектрический эффект для обнаружения
подводных лодок. Если пьезоэлектрик встречает
на своем пути ультразвуковую волну от
винта лодки, которая распространяется
со скоростью 1460 км/с, то она сжимает его
грани, и на них появляются электрические
заряды. Сжимаясь и разжимаясь, кристалл
как бы генерирует переменный электрический
ток, который можно измерить чувствительными
приборами. Если же к граням кристалла
приложить переменное напряжение, он сам
начнет колебаться, сжимаясь и разжимаясь
с частотой переменного напряжения. Эти
колебания кристалла передаются среде,
граничащей с кристаллом (воздуху, воде,
твердому телу). Так возникает ультразвуковая
волна. Ланжевен попробовал зарядить грани
кварцевого кристалла электричеством
от генератора переменного тока высокой
частоты. При этом он заметил, что кристалл
колеблется в такт изменению напряжения.
(Рис. 001) Чтобы усилить эти колебания, ученый
вложил между стальными листами-электродами
не одну, а несколько пластинок и добился
возникновения резонанса – резкого увеличения
амплитуды колебаний. Эти исследования
Ланжевена позволили создавать ультразвуковые
излучатели различной частоты. Позже появились
излучатели на основе титаната бария,
а также других кристаллов и керамики,
которые могут быть любой формы и размеров.
Ультразвук можно получить и другим способом.
В 1847 году английский физик Джеймс Джоуль
обнаружил, что при перемагничивании электрическим
током железных и никелевых стержней они
то уменьшаются, то увеличиваются в такт
изменениям направления тока. (Рис. 002)
При этом в окружающей среде возбуждаются
волны, частота которых зависит от колебаний
стержня. Это явление назвали магнитострикцией
(от латинского «стриктус» – «сжатие»).
Ультразвук оказался просто находкой
для решения технических, научных и медицинских
задач. Например, ультразвуковые дефектоскопы,
(Рис. 003) объединенные с компьютером, помогают
контролировать качество сварных швов,
бетонных опор и плит. Ультразвуковую
аппаратуру также с успехом применяют
для резки и сверления металлов, стекла
и других материалов. Ультразвук можно
использовать для измельчения вещества
– например, для приготовления тонко размолотого
цемента или асбеста, для получения однородных
эмульсий, для очистки жидкости или газа
от примесей. (Рис. 004) С помощью сфокусированного
пучка ультразвуковых волн распыляют
некоторые жидкости, например, ароматические
вещества, лекарственные препараты. Получающийся
«ультразвуковой туман», как правило,
более качественный, чем аэрозольный.
И сам этот метод экологически более безопасный,
так как можно отказаться от фторсодержащих
газов, которые используются в аэрозольных
баллончиках.
Увидеть
невидимое
Около полвека
назад ультразвук стали использовать
в ветеринарии для определения
толщины подкожного жира у свиней.
Этот прозаический метод подтолкнул
исследователей к разработке новых
излучателей и приемников ультразвука
и дал возможность «рассмотреть»
внутренние органы человека. Это гораздо
более простая процедура, чем
хирургическая операция, кроме того,
она дает возможность увидеть
органы человека в работе. Оказалось
возможным даже изучать движение
крови в сосудах, определять состояние
костной ткани; и даже внутренних
перегородок сердца – так, выпадение
митрального клапана сердца было
впервые обнаружено с помощью ультразвукового
исследования. В настоящее время ультразвуковая
диагностика получила широкое распространение.
В основном при распознавании патологических
изменений органов и тканей используют
ультразвук частотой от 500 кГц до 15 МГц.
Звуковые волны такой частоты обладают
способностью проходить через ткани организма,
отражаясь от всех поверхностей, лежащих
на границе тканей разного состава и плотности.
По физической сути можно выделить две
разновидности ультразвукового исследования:
ультразвуковая локация и ультразвуковое
просвечивание. При ультразвуковой локации
регистрируются импульсы ультразвука,
отраженные от границы сред, имеющих различные
акустические свойства. Перемещение датчика
позволяет выявить размеры, форму и расположение
исследуемого объекта. Ультразвуковое
просвечивание основано на различном
поглощении ультразвука разными тканями
организма. При исследовании внутреннего
органа в него направляют ультразвуковую
волну определенной интенсивности и регистрируют
интенсивность прошедшего сигнала датчиком,
находящимся по другую сторону органа.
По степени изменения интенсивности воспроизводится
картина внутреннего строения сканируемого
органа. Принятый сигнал обрабатывается
электронным устройством, результат выдается
в виде кривой (эхограмма) или двухмерного
изображения (т.н. сонограмма – ультразвуковая
сканограмма). В первом случае, (Рис. 005)
т.е. при одномерном (т.н. А-методе), отраженный
сигнал образует на экране осциллографа
фигуру в виде пика на прямой линии. Высота
пика соответствует акустической плотности
среды, а расстояние между пиками – глубине
расположения границы раздела между средами.
А-метод широко применяется для распознавания
болезней головного мозга (эхоэнцефалография),
органов зрения (эхоофтальмография), сердца
(эхокардиография).
Двухмерный (т.н. В-метод), - способ получения
двухмерного изображения посредством
сканирования – перемещения ультразвукового
пучка по поверхности тела во время исследования.
Сканирование обеспечивает регистрацию
сигналов последовательно от разных точек
объекта; изображение возникает на экране
телевизионного монитора (Рис. 006) и может
быть зафиксировано на фотобумаге или
пленке; его можно подвергать математической
обработке, измеряя, в частности, величину
разных элементов объекта. Яркость каждой
точки на экране находится в прямой зависимости
от интенсивности эхо-сигнала. Изображение
на телевизионном экране представлено,
обычно, 16-ю оттенками серого цвета или
цветной палитрой, отражающими акустическую
структуру тканей. На аппаратах с серой
шкалой конкременты (т.е. твердые, похожие
на гальку массы, чаще всего образующиеся
в желчном пузыре или в мочевыводящих
путях) выглядят ярко-белыми, а образования,
содержащие жидкость, например, кисты,
- черными. Современная аппаратура позволяет
производить ультразвуковое сканирование
с большой частотой кадров в 1 секунду,
что обеспечивает прямое наблюдение за
движениями органов (исследование в реальном
времени). По таким сканограммам (Рис. 009)
можно судить о расположении, форме и величине
исследуемого органа, однородности
или неоднородности его тканей. Это дает
возможность выявлять диффузное уплотнение
органа (например, при циррозе печени),
находить в нем полости с жидкостью, а
также опухолевые образования и плотные
очаги. Так, если рентген обнаруживает
опухоль, когда плотность её отличается
от плотности здоровой ткани в 1,5 – 2 раза
и она часто бывает уже неоперабельной,
то ультразвук «чувствует» её значительно
раньше. На эхограммах сердца вырисовываются
его стенки, полости, клапаны, на сонограммах
живота – структура печени, желчного пузыря,
поджелудочной железы, селезенки, (Рис.
011) почек и т.д. По эхограммам можно распознать
асцит, водянку желчного пузыря, желчные
камни, панкреатит и опухоль поджелудочной
железы, различные заболевания почек,
опухоли, гематомы, кисты и абсцессы печени
и др. С помощью ультразвукового исследования
выявляют поражения щитовидной и слюнных
желёз, небольшие количества жидкости
в плевральной полости. Широкое распространение
получило ультразвуковое сканирование
органов малого таза для распознавания
кист и опухолей яичников, опухолей мочевого
пузыря, прямой кишки и предстательной
железы, объема остаточной мочи в мочевом
пузыре. По эхограмме определяют срок
беременности, положение и массу плода,
аномалии его развития, многоплодие, исключают
внематочную беременность, а, начиная
с 26 недель – устанавливают пол будущего
ребенка. Для получения высококачественных
«срезов» аорты и её крупных ветвей, нижней
полой и воротной вен, артерий печени,
желудка и почек с помощью ультразвуковой
диагностики, не требуется, как при ангиографии,
вводить в сосуды рентгеноконтрастное
вещество и можно многократно повторять
исследование, не опасаясь нанести вред
больному. Изучая положение, форму, калибр
и очертания кровеносных сосудов, можно
выявлять их патологические изменения.
В последнее время особенно бурно развивается
Доплер-метод, основанный на использовании
как непрерывного, так и импульсного ультразвука.
Он позволяет регистрировать изменения
тока крови даже в небольших кровеносных
сосудах, поэтому доплерография применяется
и в акушерстве – с её помощью оценивают
поток крови через пуповину, работу сердца
и сосудов ребенка. Этот подход оказался
ценным и для онкологии – ведь развивающаяся
опухоль «обрастает» кровеносными сосудами,
внутри неё происходят небольшие кровоизлияния,
образуются участки омертвевшей ткани.
Всё это вызывает изменения кровотока
в сосудах и легко может быть обнаружено
с помощью Доплер-метода.
Благодаря ультразвуковой технике стало
возможным увидеть и то, что происходит
внутри костной ткани. Скорость распространения
ультразвука в костях дает информацию
об их строении, содержании органических
и минеральных веществ. Любые патологические
изменения, старение, развитие опухолей
немедленно отражаются на акустических
свойствах кости. Например, при появлении
опухолей внутри кости, скорость ультразвука
увеличивается на 9 – 10%. Эффективность
лечения таких опухолей с помощью гормонов,
химиотерапии или облучения можно параллельно
контролировать ультразвуковыми методами.
Деминерализация костей или патологические
изменения скелета могут быть выявлены
на ранней стадии, когда ещё не поздно
начинать лечение и диету, замедляющую
развитие болезни. Ультразвуковые методы
исследования оказались полезны и для
анализа человеческой крови. Дело в том,
что мембраны красных кровяных клеток
– эритроцитов – становятся более «хрупкими»
при различных заболеваниях, инфекциях,
приеме алкоголя. Этот факт давно используется
в медицине. Раньше кровь смешивали в пробирке
с антикоагулянтом, интенсивно встряхивая.
Из разрушающихся клеток освобождался
гемоглобин, который окрашивал плазму
крови, обычно бесцветную, в красный цвет.
По интенсивности этой окраски и можно
судить о скорости и степени разрушения
эритроцитов. Оказалось, что гораздо проще
разрушать эритроциты ультразвуком низкой
интенсивности. В результате получаются
так называемые эритрограммы. Этот метод
дает более точную информацию о прочности
мембран. В сочетании с компьютерным анализом
он позволяет не только улучшить диагностику
заболеваний крови, например, лейкоза,
но и судить о других патологиях, не имеющих
четкой клинической картины. Например,
на начальных стадиях цирроз печени обычно
не дает о себе знать, но токсические продукты,
появляющиеся в крови из-за неправильной
работы печени, разрушают мембраны эритроцитов,
и эритрограмма резко изменяется. У онкологических
пациентов прочность мембраны эритроцитов,
наоборот, сильно увеличивается.
В последнее время в диагностике широко
применяется и такой метод: каплю крови
помещают в кювету, дном которой служит
ультразвуковой излучатель. При включении
ультразвука с частотой 500 кГц и определенной
интенсивностью капля начинает светиться
– возникает сонолюминесценция. Свечение
это постепенно гаснет, и по скорости его
затухания можно судить о состоянии организма,
онкологических заболеваниях. Сонолюминесценция
сильно повышается при беременности, поскольку
меняется белковый состав крови. Разработаны
ультразвуковые датчики, которые предназначены
для введения в организм. Например, с помощью
такого датчика, введенного через прямую
кишку, удается выявлять опухоли кишечника
и устанавливать их размеры. Созданы специальные
датчики для ультразвукового исследования
непосредственно на операционном столе
во время оперативного вмешательства,
позволяющие определить число и местонахождение
камней в почках и в желчных протоках.
В клиническую практику внедряется методика
пункций внутренних органов и патологических
образований (опухолей, абсцессов и др.)
под контролем ультразвукового сканирования.
Для ультразвукового исследования чаще
всего не требуется специальной подготовки
больных. Однако при необходимости очень
тщательного изучения органов брюшной
полости, особенно поджелудочной железы,
прибегают к предварительному очищению
кишечника с помощью клизм. Больной должен
явиться в кабинет натощак. Исследования
органов таза рекомендуется проводить
при наполненном мочевом пузыре. Больного
могут исследовать в разном положении
тела: лёжа на спине, животе, на боку, а
также – стоя и сидя. Кожу над исследуемой
областью смазывают хорошо проводящим
ультразвук вазелиновым маслом или специальным
гелем. Используют различные положения
ручного зонда (преобразователя). Меняя
положение преобразователя, врач стремится
получить возможно более полную информацию
о состоянии органов.
Современная ультразвуковая аппаратура
позволила расширить границы знаний о
микромире. С её помощью можно получить
контрастные и объемные изображения клеток
и тонких срезов тканей. Существует специальный
акустический микроскоп, в котором используются
ультразвуковые волны высокой частоты.
Таким микроскопом улавливаются самые
тончайшие изменения «архитектуры» клеток
и дают информацию о событиях внутри организма.
Вредно
ли ультразвуковое исследование?
Применение
ультразвукового метода диагностики
безболезненно и практически
безвредно, так как не вызывает реакций
тканей. Поэтому противопоказаний для
ультразвукового исследования не существует.
Благодаря своей безвредности и
простоте ультразвуковой метод имеет
все преимущества при обследовании
детей и беременных. Использование
диагностического ультразвука в
акушерской практике должно всегда быть
основано на принципе - потенциальный
риск допустим только при получении очевидной
полезной информации. Вопросы безопасности
ультразвуковых исследований изучаются
на уровне международной ассоциации ультразвуковой
диагностики в акушерстве и гинекологии.
На сегодняшний день принято считать,
что никаких отрицательных воздействий
ультразвук не оказывает. Есть несколько
предположений о том, что теоретически
ультразвук обладает рядом отрицательных
биологических эффектов. Но это касается
только относительно нового доплеровского
исследования. В том числе и так называемого
цветового доплера, применяемого для оценки
скорости кровотока у плода. Подобное
исследование делается только с согласия
пациента и только по показаниям. До настоящего
времени пока нет ни одного сообщения
о возникновении отрицательных эффектов
у человека в результате ультразвукового
обследования.
Лечение
ультразвуком
Ультразвук,
наряду с другими средствами, используется
при лечении моче- и желчекаменной
болезни. Такой неоперативный (т.е. без
вмешательства) метод называется экстракорпоральная
ударно-волновая литотрипсия. Суть его
заключается в дроблении камней для последующего
их выведения средствами самого организма
– через мочу или желчь. При этом волны
генерируются внешним источником энергии
и передаются от него к месту проведения
операции. Специальный прибор – литотриптор
– позволяет точно выявить местоположение
камня с помощью ультразвуковых волн и,
с их же помощью производит дробление
камней. В приборах старого образца пациенту
должна быть проведена предварительная
анестезия, а его тело погружено в ванну
с водой. В приборах нового образца этого
не требуется, и процесс дробления камней
в организме человека значительно упрощается.
Список
литературы
1.Журнал «Медицинские
новости» за февраль 2009 года.
2.Журнал «Медицинская
техника» 2009 – 2011 г.
3.Научно-практический
журнал №3, №7, 2011 год, том VIII.