Шпаргалки по "Офтальмологии"

Автор работы: Пользователь скрыл имя, 08 Мая 2013 в 01:52, шпаргалка

Описание

№ 1 Зрительный анализатор, три его отдела: анатомо-физиологические особенности.
Зрительный анализатор человека относится к сенсорным системам организма и в анатомо-функциональном отношении состоит из нескольких взаимосвязанных, но различных по целевому назначению структурных единиц:
- двух глазных яблок, расположенных во фронтальной плоскости в правой и левой глазницах, с их оптической системой, позволяющей фокусировать на сетчатке (собственно рецепторная часть анализатора) изображения всех объектов внешней среды, находящихся в пределах области ясного видения каждого из них;
- системы "переработки", кодирования и передачи воспринятых изображений по каналам нейронной связи в корковый отдел анализатора;

Работа состоит из  1 файл

Otvety_na_Ekzamenatsionnye_voprosy_po_Glaznym_b.doc

— 1.22 Мб (Скачать документ)

№ 1 Зрительный анализатор, три его отдела: анатомо-физиологические особенности.

 

Зрительный  анализатор человека относится к сенсорным системам организма и в анатомо-функциональном отношении состоит из нескольких взаимосвязанных, но различных по целевому назначению структурных единиц:

- двух глазных яблок,  расположенных во фронтальной  плоскости в правой и левой  глазницах, с их оптической  системой, позволяющей фокусировать на сетчатке (собственно рецепторная часть анализатора) изображения всех объектов внешней среды, находящихся в пределах области ясного видения каждого из них;

- системы "переработки", кодирования и передачи воспринятых  изображений по каналам нейронной связи в корковый отдел анализатора;

- вспомогательных органов,  аналогичных для обоих глазных яблок (веки, конъюнктива, слёзный аппарат, глазодвигательные мышцы, фасции глазницы);

- системы жизнеобеспечения структур анализатора (кровоснабжение, иннервация, выработка внутриглазной жидкости, регуляция гидро- и гемодинамики).

Зрительный  анализатор состоит из четырех отделов:

1. Периферическая (воспринимающая) часть - глазное яблоко 

2. Проводящие пути - зрительный  нерв, хиазма, зрительный тракт 

3. Подкорковые центры - наружные коленчатые тела, зрительная  лучистость.

4. Высшие зрительные центры - затылочные доли коры больших полушарий.

Нервные пути сетчатки глаза состоят из цепи трех нейронов.

Первый нейрон - это палочковидные и колбочковидные зрительные клетки, второй – биполярные нейроциты, третий – ганглиозные нейроциты, центральные отростки которых собираются в зрительном диске и идут в составе зрительного нерва.

Волокна медиальной части зрительного нерва перекрещиваются. После перекреста в составе зрительного пути каждой стороны нервные волокна идут от наружной половины сетчатой оболочки глаза и медиальной половины сетчатой оболочки второго глаза. Волокна зрительного пути заканчиваются на каждой стороне в трех подкорковых центрах зрения: латеральном коленчатом теле, подушке бугра и в сером слое верхнего холмика среднего мозга. Первые два центра являются зрительными, третий – рефлекторным.

Центральные отростки клеток латерального коленчатого тела и подушки бугра направляются через задний отдел заднего бедра внутренней капсулы к корковому концу зрительного анализатора, расположенного на дне и по краям шпорной борозды.

№ 2 Центральный отдел зрительного анализатора.

 

Центральная часть  зрительного анализатора начинается от аксонов подкорковых зрительных центров. Эти центры соединяются зрительной лучистостью (radiatio optica, пучок Грациоле) с корой шпорной борозды (sulcus calcarinus) на медиальной поверхности затылочной доли мозга, проходя при этом заднюю ножку внутренней капсулы (crus posterior capsulae internae), что соответствует в основном полю 17 (по Бродману) коры большого мозга. Эта зона коры является центральной частью ядра зрительного анализатора, орган высшего синтеза и анализа световых раздражений. Существуют данные о единстве структуры и деятельности полей 17, 18 и 19. Поля 18 и 19 имеют у человека большие размеры. Обильные ассоциативные связи между корковыми полями, передними и задними отделами полушарий большого мозга являются одной из существенных особенностей мозга человека. Зрительный анализатор условно можно разделить на две части: ядро зрительного анализатора первой сигнальной системы — шпорная борозда, и ядро зрительного анализатора второй сигнальной системы — левая угловая извилина (gyrus angularis sinister). При поражении поля 17 может наступить физиологическая слепота, а при повреждении полей 18 и 19 нарушается пространственная ориентация или возникает «душевная» слепота.

№ 3 Периферический отдел зрительного анализатора. Анатомо-физиологическая связь сетчатки и хориоидеи. Акт зрения.

 

Сетчатка — самая внутренняя (1-я) оболочка глазного яблока. Это начальный, периферический отдел зрительного анализатора. Здесь энергия световых лучей преобразуется в процесс нервного возбуждения и начинается первичный анализ попадающих в глаз оптических раздражителей.

Сетчатка — выстилает изнутри всю поверхность сосудистой оболочки. В соответствии со структурой, а значит, и функцией в ней различают две части — оптическую (pars optica retinae) и реснично-радужковую (pars ciliaris et iridica retinae).

Сетчатка имеет вид тонкой прозрачной пленки, толщина которой около зрительного нерва 0,4 мм, у заднего полюса глаза (в желтом пятне) 0,1—0,08 мм, на периферии 0,1 мм. Сетчатка фиксирована лишь в двух местах: у диска зрительного нерва за счет волокон зрительного нерва, которые образованы отростками ганглиозных клеток сетчатки, и у зубчатой линии (ora serrata), где оканчивается оптически деятельная часть сетчатки. Ora serrata имеет вид зубчатой, зигзагообразной линии, находящейся впереди экватора глаза, приблизительно в 7—8 мм от корнео-склеральной границы, соответствуя местам прикрепления наружных мышц глаза. На остальном протяжении сетчатка удерживается на своем месте давлением стекловидного тела, а также физиологической связью между окончаниями палочек и колбочек и протоплазматическими отростками пигментного эпителия, поэтому возможны отслойка сетчатки и резкое снижение зрения.

Пигментный  эпителий, генетически относящийся к сетчатке, анатомически тесно связан с сосудистой оболочкой. Вместе с сетчаткой пигментный эпителий участвует в акте зрения, так как в нем образуются и содержатся зрительные вещества. Его клетки содержат также темный пигмент — фусцин. Поглощая пучки света, пигментный эпителий устраняет возможность диффузного светорассеяния внутри глаза, что могло бы снизить ясность зрения. Пигментный эпителий также способствует обновлению палочек и колбочек.

Зрительный  процесс начинается в сетчатке, взаимодействующей с хориоидеей, где световая энергия превращается в нервное возбуждение.

Акт зрения является очень сложным процессом, протекающий в несколько этапов. На первом этапе световые лучи, отраженные от предметов, проходят через оптические среды глаза – роговицу, влагу передней камеры, хрусталик и стекловидное тело. Во многом качество зрения зависит от степени прозрачности этих структур.

На втором этапе в сетчатке происходит не изученный еще до конца механизм трансформации энергии света в нервное возбуждение. После этого нервный импульс по специальным проводящим путям (зрительный нерв, зрительный тракт, зрительный пучок Грациоле) доставляется в головной мозг, который анализирует изображения, полученные от каждого глаза и компонует увиденное в целостную картину.

 
 

№ 4 Анатомо-физиологические особенности сетчатки, их связь со зрительными функциями.

 

Сетчатка — самая внутренняя (1-я) оболочка глазного яблока. Это начальный, периферический отдел зрительного анализатора. Здесь энергия световых лучей преобразуется в процесс нервного возбуждения и начинается первичный анализ попадающих в глаз оптических раздражителей.

Сетчатка — выстилает изнутри всю поверхность сосудистой оболочки. В соответствии со структурой, а значит, и функцией в ней различают две части — оптическую (pars optica retinae) и реснично-радужковую (pars ciliaris et iridica retinae).

Сетчатка имеет вид тонкой прозрачной пленки, толщина которой около зрительного нерва 0,4 мм, у заднего полюса глаза (в желтом пятне) 0,1—0,08 мм, на периферии 0,1 мм. Сетчатка фиксирована лишь в двух местах: у диска зрительного нерва за счет волокон зрительного нерва, которые образованы отростками ганглиозных клеток сетчатки, и у зубчатой линии (ora serrata), где оканчивается оптически деятельная часть сетчатки. Ora serrata имеет вид зубчатой, зигзагообразной линии, находящейся впереди экватора глаза, приблизительно в 7—8 мм от корнео-склеральной границы, соответствуя местам прикрепления наружных мышц глаза. На остальном протяжении сетчатка удерживается на своем месте давлением стекловидного тела, а также физиологической связью между окончаниями палочек и колбочек и протоплазматическими отростками пигментного эпителия, поэтому возможны отслойка сетчатки и резкое снижение зрения.

Пигментный  эпителий, генетически относящийся к сетчатке, анатомически тесно связан с сосудистой оболочкой. Вместе с сетчаткой пигментный эпителий участвует в акте зрения, так как в нем образуются и содержатся зрительные вещества. Его клетки содержат также темный пигмент — фусцин. Поглощая пучки света, пигментный эпителий устраняет возможность диффузного светорассеяния внутри глаза, что могло бы снизить ясность зрения. Пигментный эпителий также способствует обновлению палочек и колбочек.

№ 5 Глазное яблоко: форма, размеры, топографические ориентиры, оболочки, содержимое. Возрастные особенности.

 

Глаз человека, приблизительно на треть расположенный в полости глазницы, имеет не совсем правильную шаровидную форму.

У здоровых новорожденных его размеры, определенные путем расчетов, равны (в среднем) по сагиттальной оси 17 мм, поперечной 17 мм и вертикальной 16,5 мм. У взрослых людей с соразмерной рефракцией глаза эти показатели составляют 24,4; 23,8 и 23,5 мм соответственно.

Анатомические ориентиры глаза: передний полюс — соответствует вершине роговицы, задний полюс — его противоположной точке на склере. Линия, соединяющая эти полюса, называется наружной осью глазного яблока. Прямая, мысленно проведенная для соединения задней поверхности роговицы с сетчаткой в проекции указанных полюсов, именуется его внутренней (сагиттальной) осью. Лимб — место перехода роговицы в склеру — используют в качестве ориентира для точной локализационной характеристики обнаруженного патологического фокуса в часовом отображении (меридианальный показатель) и в линейных величинах, являющихся показателем удаленности от точки пересечения меридиана с лимбом.

В целом макроскопическое строение глаза представляется, на первый взгляд, обманчиво простым: две покровные (конъюнктива и влагалище глазного яблока) и три основные оболочки (фиброзная, сосудистая, сетчатая), а также содержимое его полости в виде передней и задней камер (заполнены водянистой влагой), хрусталика и стекловидного тела. Однако гистологическая структура большинства тканей достаточно сложна.

Глазное яблоко состоит из разных тканей, которые анатомически и функционально подразделяются на 4 группы: 1) зрительно-нервный аппарат, представленный сетчаткой с ее проводниками в мозг; 2) сосудистая оболочка — хориоидея, цилиарное тело и радужная оболочка; 3) светопреломляющий (диоптрический) аппарат, состоящий из роговицы, водянистой влаги, хрусталика и стекловидного тела; 4) наружная капсула глаза — склера и роговица.

№ 6 Кровоснабжение глазного яблока. Основные ветви a. ophthalmica. Венозная система глаза и орбиты.

 

Глазное яблоко снабжается кровью из глазной артерии — ветви внутренней сонной артерии. Глазная артерия проникает в глазницу вместе со зрительным нервом. В глазнице артерия распадается на ряд ветвей, главными из которых являются центральная артерия сетчатки, мышечные артерии, задние длинные и короткие цилиарные артерии, а также слезная и медиальная артерии век.

Кровоснабжение  сетчатки осуществляется системой центральной артерии сетчатки. Она отходит от глазной артерии, проникает в толщу зрительного нерва и идет по его оси. На диске зрительного нерва артерия делится на верхнюю и нижнюю ветви, каждая из которых разделяется на височную и носовую артерии. Капилляры сетчатки относятся к концевым сосудам без анастомозов.

Ретинальная и увеальные системы кровообращения глаза более или менее самостоятельны, анастомозы между ними очень слабые и не имеют практического значения.

Отток крови  из сосудистого тракта осуществляется по системе вортикозных вен. Вены сетчатки соответствуют артериям, причем каждая артерия сопровождается только одной веной. Выйдя из нерва, центральная вена сетчатки впадает в верхнюю глазничную вену или чаще, уходит в полость черепа, где впадает непосредственно в sinus cavernosus. Главным коллектором крови всего глаза и глазницы является верхняя глазничная вена. Она сопутствует глазничной артерии и уходит из глазницы через верхнюю глазничную щель, после чего впадает в sinus cavernosus. Нижняя орбитальная вена проходит по нижней границе внутренней стенки глазницы и соединяется с верхней глазничной веной.

 

№ 7 Иннервация глазного яблока. Источники чувствительной, двигательной, вегетативной иннервации. Цилиарный (ресничный) узел.

 

Ткани глаза  иннервируются длинными и короткими цилиарными нервами, содержащими чувствительные, трофические, двигательные и вазомоторные волокна, полученные от ветвей тройничного и глазодвигательного нервов и сплетения сонной артерии.

Длинные цилиарные  нервы отходят от первой ветви тройничного нерва.

Короткие цилиарные нервы выходят из цилиарного узла, расположенного в глазнице.

Цилиарный узел — периферический нервный ганглий, клетки которого связаны с чувствительными, двигательными и симпатическими волокнами.

В глазнице к длинным и коротким цилиарным нервам присоединяются симпатические волокна из сплетения внутренней сонной артерии, не входящие в цилиарный узел. Короткие цилиарные нервы распределяются в сосудистом тракте, причем в хориоидее чувствительных нервов нет (при хориоидитах отсутствует боль), а симпатические волокна, присоединившиеся в глазнице, иннервируют дилататор радужной оболочки.

Длинные цилиарные нервы  вместе с короткими нервами образуют густое нервное сплетение в цилиарном  теле и по окружности роговицы. От этого сплетения идут чувствительные и трофические нервы в роговицу. В нее проникают и волокна от нервного сплетения в цилиарном теле, от которого идут также ветви в радужку. При патологических процессах в одной из оболочек, например в роговице, происходят изменения и в радужке и цилиарном теле, возникают болевой синдром, светобоязнь.

Двигательная иннервация органа зрения человека реализуется с помощью III, IV, VI и VII пар черепных нервов, чувствительная — посредством первой (n.ophthalmicus) и отчасти второй (n.maxillaris) ветвей тройничного нерва (V пара черепных нервов).

№ 8 Глазница (орбита), её стенки, отверстия. Отношение глазницы к придаточным пазухам носа и полости черепа.

 

Глазница, или  орбита, имеет форму четырехгранной пирамиды с закругленными ребрами. Основание пирамиды — ее глазничный край обращено кпереди, вершина — кзади, в полость черепа.

Глазницу образуют 7 костей: лобная, основная, решетчатая, небная, слезная, скуловая и верхняя челюсть.

В глазнице различают 4 стенки: верхнюю, нижнюю, внутреннюю и наружную.

В передневнутренней  части верхней стенки заложена лобная пазуха, ее размеры индивидуальны.

Верхняя стенка глазницы отделяет ее от передней черепной ямки и поэтому граничит с полостью черепа и мозгом.

В наружном углу верхней  стенки есть углубление для слезной железы.

У внутреннего края верхней стенки на месте ее перехода во внутреннюю есть выемка, или костное отверстие, — место выхода одноименной артерии и нерва.

Нижняя стенка отделяет глазницу от гайморовой полости.

Наружная стенка образована нижней поверхностью скулового отростка лобной, глазничной поверхностью большого крыла основной и основным отростком скуловой кости и отделяет содержимое глазницы от височной ямки.

Внутренняя стенка образована решетчатой костью, ее бумажной пластинкой, спереди слезной костью и лобным отростком верхней челюсти у вершины глазницы. На поверхности слезной кости есть ямка для слезного мешка. От нее начинается слезно-носовой костный канал, который открывается в нижнем носовом ходе на расстоянии 3—3,5 см от наружного отверстия носа. Внутренняя стенка отделяет глазницу от решетчатой пазухи. Бумажная пластинка бывает очень тонкой и представлена подчас двумя слоями надкостницы. Она легко повреждается даже при неосторожном высмаркивании. Повреждение этой стенки обусловливает эмфизему век и реже ретробульбарной клетчатки.

Таким образом, глазное яблоко окружено придаточными пазухами носа. Их патология нередко участвует в развитие глазной патологии.

Отверстия.

У вершины глазницы имеется отверстие зрительного канала, через который проходят зрительный нерв и глазная артерия.

На границе между  верхней и латеральной стенками расположена верхняя глазничная щель, соединяющая полость глазницы с полостью черепа, через нее проходят глазной, глазодвигательный, отводящий, блоковый нервы и глазные вены.

На границе между  латеральной и нижней стенками глазницы находится нижняя глазничная щель, через которую проходят подглазничный нерв вместе с одноименными артерией и веной, скуловой нерв, венозные анастомозы.

На медиальной стенке глазницы расположены передние и задние решетчатые отверстия, через которые из глазницы в лабиринт решетчатой кости и носовую полость проходят одноименные нервы, артерии и вены.

В толще нижней стенки расположена подглазничная борозда, переходящая кпереди в одноименный канал, открывающийся на передней поверхности отверстием, в этом канале проходит подглазничный нерв с одноименными артерией и веной.

В глазнице имеются  углубления — ямки слезной железы и слезного мешка; последняя переходит в костный носослезный канал, открывающийся в нижний носовой ход.

№ 9 Верхняя глазничная щель; топография, образования, проходящие через неё. Синдром верхней глазничной щели.

 

Верхняя глазничная щель образована телом клиновидной кости и ее крыльями, соединяет глазницу со средней черепной ямкой.

Затянута тонкой соединительнотканной пленкой, через которую в глазницу проходят три основные ветви глазного нерва — слезный, носоресничный и лобный нервы, а также стволы блокового, отводящего и глазодвигательного нервов. Через эту же щель ее покидает верхняя глазная вена.

При повреждениях этой области развивается характерный симптомокомплекс: полная офтальмоплегия, т. е. обездвиженность глазного яблока, опущение (птоз) верхнего века, мидриаз, снижение тактильной чувствительности роговицы и кожи век, расширение вен сетчатки и небольшого экзофтальма. Однако "синдром верхней глазничной щели" может быть выражен не полностью, когда повреждены не все, а лишь отдельные нервные стволы, проходящие через эту щель.

 
 

 

 

 

№ 10 Веки: строение, функции, кровоснабжение, иннервация, лимфоотток. Значение анатомо-физиологических особенностей век в их патологии.

 

Веки образуют глазную щель. Они в виде подвижных заслонок прикрывают переднюю поверхность глазного яблока, защищая его от вредных внешних воздействий. Скользя по глазу при мигательных движениях, веки равномерно распределяют слезу, поддерживая влажность роговицы и конъюнктивы и смывая мелкие инородные тела.

Веки соединяются у углов глазной щели внутренней и наружной связками.

Во внутреннем углу глазной щели есть небольшое возвышение — слезное мясцо, имеющее строение кожи с сальными и потовыми железами и волосками.

Свободные края век толщиной около 2 мм плотно прилегают друг к другу. В них различают переднее и заднее ребра, интермаргинальное, т.е. межреберное, пространства: На переднем ребре растут ресницы, в луковицы которых открываются выводные протоки сальных желез Цейса. Между ресницами расположены видоизмененные потовые железы Молля. В интермаргинатьное пространство открываются выводные протоки желез хряша (мейбомневы). Их жировой секрет смазывает края век, способствуя их плотному прилеганию.

Кожа век очень тонкая, нежная и легко собирается в складки. Подкожная клетчатка очень рыхлая и почти совершенно лишена жира. Этим объясняется легкость возникновения и распространения отеков, кровоизлияний, воздуха при ушибах, местных воспалительных процессах, заболеваниях сердечно-сосудистой системы, почек и др.

На коже век  видны две горизонтальные борозды — верхняя и нижняя орбитопальпебральные складки, соответствующие границам хрящей век. Верхняя борозда зависит от тонуса мышцы, поднимающей верхнее веко. Леватор верхнего века имеет 3 ножки, прикрепленные к веку. Две ножки мышцы иннервируются глазодвигательным нервом, средняя часть мышцы, состоящая из гладких волокон, — симпатическим нервом. При параличе симпатического нерва наблюдается небольшой птоз, а паралич глазодвигательного нерва приводит к полному опущению века.

Под кожей расположена  круговая мышца век, в которой различают орбитальную и пальпебральную части.

Волокна орбитальной  части делают круг вдоль края глазницы.

Пальпебральная часть расположена на веках, их сокращение приводит к смыканию глазной щели во время сна и при мигании. При зажмуривании происходит сокращение обеих частей мышцы.

Позади пальпебральной части круговой мышцы век находится  плотная соединительная пластинка, которая называется хрящом, хотя и не содержит хрящевых клеток. Хрящ служит остовом для век и придает им соответствующую форму. В толще хряща заложены мейбомиевы железы, продуцирующие жирный секрет, который препятствует переливанию слезы через край век. Точечные выводные протоки этих желез выходят в интермаргинальное пространство. Тончайшая пленка жирового секрета прикрывает тончайший слой слезы на поверхности роговицы, задерживая ее испарение.

Вдоль переднего  ребра века в 2—3 ряда растут ресницы. Около корня каждой ресницы расположены сальные и видоизмененные потовые железы, выводные протоки которых открываются в волосяные мешочки ресниц.

У медиального  края век имеется возвышение —  слезный сосочек, на вершине которого зияет слезная точка — начальная часть слезных канальцев.

Веки имеют  обильную сеть широко анастомозируюших сосудов глазничной (ветви внутренней сонной артерии) и верхнечелюстной (ветви наружной сонной артерии) артерий. Они образуют аркады на веках, обеспечивая им хорошее питание и регенерацию (при травмах, операциях).

Отток венозной крови происходит в сторону вен лица и глазницы, между которыми существуют анастомозы. Клапанов в венах нет, и кровь циркулирует в различных направлениях. Вследствие этого возможны переход воспалительного процесса век (абсцесс, флегмона, ячмень и др.) верхней половины лица в глазницу и пещеристую пазуху и развитие гнойного менингита.

Лимфатические сосуды верхнего века впадают в лимфатические узлы, расположенные впереди ушной раковины, нижнего века - в узлы, находящиеся на уровне угла нижней челюсти

Топографо-анатомически в веке различают два слоя, или пластинки: кожно-мышечную и конъюнктивально-хрящевую. Границей между ними является середина межреберного пространства впереди протоков мейбомиевых желез.

Внутренняя  поверхность век покрыта конъюнктивой. Конъюнктива покрывает тонкой оболочкой веки, глазное яблоко вплоть до роговицы. Различают соответственно конъюнктиву век, конъюнктиву глазного яблока или склеры и конъюнктиву переходных складок. Ту часть конъюнктивы век, которая, образуя свод, переходит на глазное яблоко, называют конъюнктивой переходных складок, или сводов.

Конъюнктива выполняет важные физиологические функции. Высокая чувствительная иннервация обеспечивает ее защитную роль. Секрет конъюнктивальных желез постоянно смазывает поверхность глазного яблока, обеспечивает трофику роговицы. Барьерная функция конъюнктивы осуществляется множеством лимфоидных элементов в подслизистой оболочке аденоидной ткани.

№ 11 Слезопродуцирующие органы и слезоотводящие пути; строение, механизм слезоотведения. Методы диагностики нарушения слезоотведения.

 

Слезный аппарат состоит их слезопродуцирующей части (слезная железа, добавочные слезные железки конъюнктивы) и слезоотводящей части (слезные точки, слезные канальцы, слезный мешок, слезно-носовой канал).

Продукция слезной  жидкости осуществляется слезной железой и мелкими добавочными железами Краузе и Вольфринга. Последние обеспечивают суточную потребность глаза в увлажняющей его жидкости. Главная же слезная железа активно функционирует лишь в условиях эмоциональных всплесков (положительных и отрицательных), а также в ответ на раздражение чувствительных нервных окончаний в слизистой оболочке глаза или носа (рефлекторное слезоотделение).

Слезная железа лежит под верхненаружным краем орбиты в углублении лобной кости. Сухожилие мышцы, поднимающей верхнее веко, делит ее на большую глазничную и меньшую вековую части. Выводные протоки глазничной доли железы (в количестве 3—5) проходят между дольками вековой железы, принимая попутно ряд ее многочисленых мелких протоков, и открываются в своде конъюнктивы на расстоянии нескольких миллиметров от верхнего края хряща. Кроме того, вековая часть железы имеет и самостоятельные протоки, количество которых от 3 до 9.

Слезная железа иннервируется секреторными волокнами лицевого нерва, которые, проделав сложный путь, достигают ее в составе слезного нерва, являющегося ветвью глазного нерва.

Слезная железа обеспечивает рефлекторное слезотечение в ответ на механическое раздражение, инородное тело, слезотечение обеспечивается при эмоциональном плаче, когда выделяется до 30 мл слезы в минуту.

Секрет слезной железы — слеза содержит 98% воды, около 0,1% белка, 0,8% минеральных солей, немного роданистого калия, эпителия, слизи, жира и лизоцима (антибиотик животного происхождения). Слеза постоянно увлажняет роговицу, поддерживает ее оптические свойства, механически смывает пылинки, попадающие в глаз, играет трофическую роль. Слезные органы выполняют важнейшую защитную функцию

Слезоотводящие  пути состоят из слезных канальцев, слезного мешка и носослезного протока.

Слезные канальцы начинаются слезными точками, которые находятся на вершине слезных сосочков обоих век и погружены в слезное озеро. Они ведут в вертикальную часть канальцев. Затем ход их меняется почти на горизонтальный. Далее они, постепенно сближаясь, открываются в слезный мешок позади внутренней спайки век каждый в отдельности или слившись предварительно в общее устье.

Слезный мешок расположен в костной, вытянутой по вертикали ямке между передним и задним коленами внутренней спайки век и охвачен мышечной петлей.

В целом можно  принять, что слезоотводящий путь состоит из небольших мягких трубочек различной длины и формы с изменяющимся диаметром, которые стыкуются под определенными углами. Они соединяют конъюнктивальную полость с носовой, куда и происходит постоянный отток слезной жидкости. Он обеспечивается за счет мигательных движений век, сифонного эффекта с капиллярным притяжением жидкости, заполняющей слезные пути, перистальтического изменения диаметра канальцев, присасывающей способности слезного мешка (вследствие чередования в нем положительного и отрицательного давления при мигании) и отрицательного давления, создающегося в полости носа при асппрационпом движении воздуха.

Методы диагностики  нарушения слезоотведения. Используются такие методы как, Цветовая слезно-носовая проба, Зондирование, Промывание, Насосная (канальцевая) проба, Тесты Джонеса,

№ 12 Конъюнктива: строение, функции, кровоснабжение, иннервация, лимфоотток. Роль анатомо-физиологических особенностей конъюнктивы в её патологии. Свойства нормальной конъюнктивы.

 

Конъюнктива — тонкая слизистая оболочка, которая покрывает всю заднюю поверхность век, а затем, образовав своды конъюнктивального мешка, переходит на переднюю поверхность глазного яблока и оканчивается у лимба. Ее называют соединительной оболочкой, так как она соединяет веко и глаз.

В конъюнктиве  век выделяют две части — тарзальную, плотно сращенную с подлежащей тканью, и мобильную глазничную в виде переходной (к сводам) складки.

Конъюнктива хряща  покрыта многослойным цилиндрическим эпителием и содержит у края век бокаловидные клетки, а около дистального конца хряща — крипты Генле. И те, и другие секретируют муцин. В норме сквозь конъюнктиву просвечивают мейбомиевы железы, образующие рисунок в виде вертикального частокола. Под эпителием находится ретикулярная ткань, прочно спаянная с хрящом. У свободного края века конъюнктива гладкая, но уже на расстоянии 2—3 мм от него приобретает шероховатость, обусловленную наличием здесь сосочков.

Конъюнктива переходной складки гладкая и покрыта 5—6-слойным плоским эпителием с большим количеством бокаловидных слизистых клеток (выделяют муцин). Ее подэпителиальная рыхлая соединительная ткань, состоящая из эластических волокон, содержит плазматические клетки и лимфоциты, способные образовывать скопления в виде фолликулов или лимфом.

Конъюнктива глазного яблока покрыта многослойным плоским неороговевающим эпителием и рыхло соединена со склерой, поэтому может легко смещаться по ее поверхности. Лимбальная часть конъюнктивы содержит островки цилиндрического эпителия с секретирующими клетками Бехера. В этой же зоне, радиально к лимбу, расположены клетки Манца, продуцирующие муцин.

Кровоснабжение  конъюнктивы век осуществляется за счет сосудистых стволов, отходящих от артериальных дуг пальпебральиых артерий.

В конъюнктиве  же глазного яблока содержатся два слоя сосудов — поверхностный и глубокий. Поверхностный образован ветвями, отходящими от артерий век, а также передними ресничными артериями (ветви мышечных артерий). Первые из них идут в направлении от сводов конъюнктивы к роговице, вторые — навстречу им. Глубокие (эписклеральпые) сосуды конъюнктивы являются ветвями только передних ресничных артерий. Они направляются в сторону роговицы и образуют вокруг нее густую сеть. Основные же стволы передних ресничных артерий, не дойдя до лимба, уходят внутрь глаза и участвуют в кровоснабжении ресничного тела.

Вены конъюнктивы сопутствуют соответствующим артериям. Отток крови идет в основном по пальпебральной системе сосудов в лицевые вены.

Отток лимфы от слизистой оболочки верхнего века происходит в предушные лимфатические узлы, а от нижнего — в подчелюстные.

Чувствительная  иннервация конъюнктивы обеспечивается слезным, подблоковым и подглазничным нервами.

Конъюнктива выполняет  важные физиологические функции. Высокая чувствительная иннервация обеспечивает ее защитную роль. Секрет конъюнктивальных желез постоянно смазывает поверхность глазного яблока, обеспечивает трофику роговицы. Барьерная функция конъюнктивы осуществляется множеством лимфоидных элементов в подслизистой оболочке аденоидной ткани.

 
 

№ 13 Роговая оболочка глаза: строение, функции, источники трофики. Свойства нормальной роговицы.

 

Роговица – передняя прозрачная часть фиброзной оболочки. Через неё в глаз проникают лучи света.

Передние цилиарные артерии отдают веточки, которые идут к роговице и образуют по лимбу густую сеть капилляров — краевую сосудистую сеть роговицы. В роговицу сосуды не заходят. Она также является главной преломляющей средой глаза. Отсутствие внешней постоянной защиты роговицы компенсируется обилием чувствительных нервов, вследствие чего малейшее прикосновение к роговице вызывает судорожное смыкание век, чувство боли и рефлекторное усиление мигания со слезотечением

Роговица имеет  несколько слоев и снаружи покрыта прекорнеальной пленкой, которая играет важнейшую роль в сохранении функции роговицы, в предотвращении ороговевания эпителия.

Прекорнеальная  жидкость увлажняет поверхность эпителия роговицы и конъюнктивы и имеет сложный состав, включающий секрет ряда желез: главной и добавочной слезной, мейбомиевой, железистых клеток конъюнктивы.

Прекорнеальная  пленка состоит из 3 слоев. Первый слой прилежит к эпителию роговицы и называется муциновым слоем. Благодаря ему прекорнеальная пленка прочно удерживается на роговице, он сглаживает все микронеровности эпителиальной поверхности, обеспечивая характерный для роговицы зеркальный блеск. Однако муциновый слой быстро утрачивается при снижении продукции муцина.

Второй, водянистый слой состоит из электролитов и мукопротеидов. Этот непрерывно обновляющийся слой обеспечивает доставку к эпителию питательных веществ и газообмен, удаление метаболитов и слущивающихся эпителиальных клеток.

Третий, наружный слой. Это липидный слой.

В роговице различают 5 слоев:

— эпителий многослойный плоский неороговевающий, продолжение эпителия конъюнктивы;

— боуменова оболочка — тонкая бесструктурная неэластичная ткань с тонкими канальцами, в которых проходят нервы из стромы в эпителий. Она хорошо сопротивляется повреждениям и плохо — инфекции. После повреждения не регенерирует, остаются нежные помутнения по типу облачка;

— строма — собственная  ткань роговицы, состоящая из наслоенных друг на друга соединительнотканных пластин, склеенных межуточным веществом. Это самый массивный слой, плохо регенерирует, сохраняя более интенсивные помутнения;

— десцеметова оболочка — гомогенная, тонкая, производное эпителия, эластичная, устойчивая к инфекции и повреждению, регенерирует. Она легко отслаивается от стромы и становится складчатой. В области лимба боуменовой и десцеметовой оболочек нет;

— эндотелий, или внутренний эпителий, толщиной 0,004—0,005 мм, слой крупных плоских клеток с большим ядром. Регенерирует плохо.

Что касается питания роговицы, то оно осуществляется двумя путями: за счет диффузии из перилимбальной сосудистой сети, образованной передними ресничными артериями, и осмоса из влаги передней камеры и слезной жидкости.

№ 14 Особенности строения и обменных процессов роговой оболочки, их значение в возникновении и развитии патологических процессов в ней.

 

Роговица – передняя прозрачная часть фиброзной оболочки. Через неё в глаз проникают лучи света.

Передние цилиарные артерии отдают веточки, которые идут к роговице и образуют по лимбу густую сеть капилляров — краевую сосудистую сеть роговицы. В роговицу сосуды не заходят. Она также является главной преломляющей средой глаза. Отсутствие внешней постоянной защиты роговицы компенсируется обилием чувствительных нервов, вследствие чего малейшее прикосновение к роговице вызывает судорожное смыкание век, чувство боли и рефлекторное усиление мигания со слезотечением

Роговица имеет  несколько слоев и снаружи покрыта прекорнеальной пленкой, которая играет важнейшую роль в сохранении функции роговицы, в предотвращении ороговевания эпителия.

Прекорнеальная  жидкость увлажняет поверхность эпителия роговицы и конъюнктивы и имеет сложный состав, включающий секрет ряда желез: главной и добавочной слезной, мейбомиевой, железистых клеток конъюнктивы.

Прекорнеальная  пленка состоит из 3 слоев. Первый слой прилежит к эпителию роговицы и называется муциновым слоем. Благодаря ему прекорнеальная пленка прочно удерживается на роговице, он сглаживает все микронеровности эпителиальной поверхности, обеспечивая характерный для роговицы зеркальный блеск. Однако муциновый слой быстро утрачивается при снижении продукции муцина.

Второй, водянистый слой состоит из электролитов и мукопротеидов. Этот непрерывно обновляющийся слой обеспечивает доставку к эпителию питательных веществ и газообмен, удаление метаболитов и слущивающихся эпителиальных клеток.

Третий, наружный слой. Это липидный слой.

В роговице различают 5 слоев:

— эпителий многослойный плоский неороговевающий, продолжение  эпителия конъюнктивы;

— боуменова оболочка — тонкая бесструктурная неэластичная ткань с тонкими канальцами, в которых проходят нервы из стромы в эпителий. Она хорошо сопротивляется повреждениям и плохо — инфекции. После повреждения не регенерирует, остаются нежные помутнения по типу облачка;

— строма — собственная  ткань роговицы, состоящая из наслоенных друг на друга соединительнотканных пластин, склеенных межуточным веществом. Это самый массивный слой, плохо регенерирует, сохраняя более интенсивные помутнения;

— десцеметова оболочка — гомогенная, тонкая, производное эпителия, эластичная, устойчивая к инфекции и повреждению, регенерирует. Она легко отслаивается от стромы и становится складчатой. В области лимба боуменовой и десцеметовой оболочек нет;

— эндотелий, или внутренний эпителий, толщиной 0,004—0,005 мм, слой крупных плоских клеток с большим ядром. Регенерирует плохо.

Что касается питания роговицы, то оно осуществляется двумя путями: за счет диффузии из перилимбальной сосудистой сети, образованной передними ресничными артериями, и осмоса из влаги передней камеры и слезной жидкости.

№ 15 Склера: строение, функции.

 

Склера — непрозрачная, плотная фиброзная, бедная клеточными элементами и сосудами часть наружной оболочки глаза, занимающая 5/6 ее окружности. Она имеет белый или слегка голубоватый цвет, ее иногда называют белочной оболочкой. Сверху она покрыта надсклеральной пластинкой — эписклерой, состоит из собственного вещества и внутреннего слоя, имеющего коричневатый оттенок (бурая пластинка склеры).

Строение склеры приближается к коллагеновым тканям, так как она состоит из межклеточных коллагеновых образований, тонких эластических волокон и склеивающей их субстанции. Между внутренней частью склеры и сосудистой оболочкой имеется щель — супрахориоидальное пространство. Снаружи склера покрыта эписклерой, с которой соединена рыхлыми соединительнотканными волокнами. Эписклера является внутренней стенкой тенонова пространства.

Впереди склера переходит в роговицу, это место называется лимбом. Здесь находится одно из наиболее тонких мест наружной оболочки, поскольку ее истончают структуры дренажной системы, интрасклеральные пути оттока.

В заднем отделе склеру прободает зрительный нерв. Это второе самое тонкое место в наружной оболочке глаза представлено тонкой решетчатой пластинкой, через которую проходят волокна зрительного нерва и сосуды сетчатки. 2/3 толщины склеры переходит в оболочку зрительного нерва и только 1/3 (внутренняя) образует решетчатую пластинку. На внутреннюю пластинку падает вся нагрузка от внутриглазного давления, и ее устойчивость определяет судьбу зрения больных глаукомой.

Склера в  разных местах пронизана проходящими  в глаз артериями, нервами и входящими венами. У заднего полюса вблизи зрительного нерва через нее проходят задние длинные и короткие цилиарные сосуды и нервы. У экватора в сильно скошенном направлении выходят 4—6 вортикозных вен. В переднем отделе, между местами прикрепления прямых мышц и лимбом, проникают передние цилиарные артерии и вены. По ходу этих каналов возможен рост опухоли.

 

 

№ 16 Дренажная система глаза: строение, пути циркуляции внутриглазной жидкости.

 

Полость глаза  содержит светопроводящие и светопреломляющие среды: водянистую влагу, заполняющую его переднюю и заднюю камеры, хрусталик и стекловидное тело.

Передняя камера глаза представляет собой пространство, ограниченное задней поверхностью роговицы, передней поверхностью радужки и центральной частью передней капсулы хрусталика.

Место, где  роговица переходит в склеру, а радужка в ресничное тело, называется углом передней камеры. Он включает в себя следующие структурные элементы: вход, бухту с передней и задней стенками, вершину и нишу.

В наружной стенке угла передней камеры находится дренажная  система глаза, состоящая из трабекулярной диафрагмы, склерального венозного синуса и коллекторных канальцев.

Трабекулярная диафрагма имеет вид пористой кольцевидной сеточки треугольной формы, сложного строения. В пластинках трабекулы имеются отверстия, а между пластинами - щели. Таким образом, вся трабекула пронизана щелями, заполненными водянистой влагой.

Шлеммов канал или склеральный синус, представляет собой циркулярную щель, от передней камеры он отделен трабекулярным аппаратом, снаружи - толстый слой склеры и эписклеры, содержащие венозные сплетения и артериальные веточки.

Коллекторные  канальцы.

Как уже указывалось выше, кнаружи от шлеммова канала в склере расположено густое венозное сплетение - поверхностное и глубокое. Шлеммов канал связан с обоими сплетениями посредствам коллекторных канальцев.

Трабекулярный аппарат представляет собой многослойный, самоочищающийся фильтр, обеспечивающий одностороннее движение жидкости и мелких частиц из передней камеры в склеральный синус. Трабекулярные пластины связаны с продольными волокнами ресничной мышцы, а также с корнем радужки. В нормальных условиях тонус ресничной мышцы непрерывно меняется.

Это сопровождается колебаниями в натяжении трабекулярных пластин. В результате трабекулярные щели попеременно расширяются и спадаются, что способствует движению жидкости внутри трабекулярной системы, ее постоянному перемешиванию и обновлению. На трабекулярные структуры оказывают влияние колебательные движения зрачка. Непрерывные колебания тонуса трабекулярных пластин играют важную роль в сохранении их эластичности и упругости.

Прекращение колебательных  движений трабекулярного аппарата может привести к огрублению волокнистых структур, перерождению эластичных волокон и в конечном счете к ухудшению оттока водянистой влаги из глаза. Задняя камера глаза находится за радужкой и ограничена снаружи внутренней поверхностью ресничного тела, сзади - передним пограничным слоем стекловидного тела. Внутреннюю стенку образует экватор хрусталика.

В норме камеры глаза свободно сообщаются через зрачок и заполнены водянистой влагой. Она содержит питательные вещества (глюкозу, аскорбиновую кислоту, кислород - для хрусталика и роговицы) и уносит из глаза отработанные продукты обмена - молочную кислоту, углекислый газ, пигментные клетки и т.д. Между притоком и оттоком внутриглазной жидкости существует равновесие. Если по каким-то причинам оно нарушается, это приводит к изменению уровня внутриглазного давления, верхняя граница которого в норме не превышает 27 мм рт. ст. (при измерении тонометром весом 10 граммов). Основной движущей силой, обеспечивающей непрерывный ток жидкости из задней камеры в переднюю, а затем через угол передней камеры за пределы глаза, является разность давлений в полости глаза и венозном синусе склеры (около 10 мм рт. ст.), а также в венозном синусе и передних цилиарных веках.

При стойком  и длительном повышении внутриглазного давления возникают препятствия (блоки), которые приводят к нарушению сообщений между полостями глазного яблока или закрытию дренажных каналов. Эти нарушения (блоки) могут быть преходящими (временными) или органическими (постоянными).

Возможна блокада  угла передней камеры корнем радужки, глыбками пигмента, воспалительным экссудатом и т.д. При врожденных, глаукомах трабекула может изнутри прикрываться эмбриональной тканью, что также нарушает циркуляцию внутриглазной жидкости и является причиной повышения внутриглазного давления.

№ 17 Сосудистый (увеальный) тракт глаза. Три его отдела, их функциональное значение.

 

Это средняя  оболочка глазного яблока; она насыщена кровеносными сосудами, и ее главная функция питательная.

Увеальный тракт  состоит из трех основных частей: сосудистой оболочки (сосудистый пигментированный слой, выстилающий большую часть задней камеры глаза), ресничного тела, из которого вырастают цинновы связки (поддерживающие связки), удерживающие хрусталик и радужку, расположенную перед хрусталиком

В собственно сосудистой оболочке, в самом внутреннем ее слое, называемом хориокапиллярной пластинкой и расположенном вплотную к стекловидному слою (мембранам Бруха), находятся очень мелкие кровеносные сосуды, обеспечивающие питание зрительных клеток. Мембраны Бруха отделяют сосудистую оболочку от пигментного эпителия сетчатки. Сосудистая оболочка сильно пигментирована у всех людей, кроме альбиносов. Пигментация создает светонепроницаемость стенки глазного яблока и снижает отражение падающего света.

Спереди сосудистая оболочка составляет одно целое с радужкой, которая образует своего рода диафрагму, или шторку, и частично отделяет переднюю часть глазного яблока от значительно большей задней его части. Обе части соединяются через зрачок (отверстие в середине радужки), который выглядит как черное пятно.

Цилиарное, или  ресничное, тело имеет форму кольца с наибольшей толщиной у места соединения с радужкой благодаря присутствию гладкой мышцы. С этой мышцей связано участие цилиарного тела в акте аккомодации, обеспечивающей ясное видение на различных расстояниях. Цилиарные отростки вырабатывают внутриглазную жидкость, которая обеспечивает постоянство внутриглазного давления и доставляет питательные вещества бессосудистым образованиям глаза — роговице, хрусталику и стекловидному телу.

Передняя часть  сосудистого тракта — радужка, в ее центре имеется отверстие — зрачок, выполняющий функцию диафрагмы. Зрачок регулирует количество света, поступающего в глаз. Диаметр зрачка изменяют две мышцы, заложенные в радужке, — суживающая и расширяющая зрачок. От слияния длинных задних и передних коротких сосудов хориоидеи возникает большой круг кровообращения цилиарного тела, от которого радиально в радужку отходят сосуды. Атипичный ход сосудов (не радиальный) может быть или вариантом нормы, или, что более важно, признаком неоваскуляризации, отражающей хронический (не менее 3—4 мес) воспалительный процесс в глазу. Новообразование сосудов в радужке называется рубеозом.

№ 18 Радужная оболочка глаза: строение, функции, кровоснабжение, иннервация. Свойства нормальной радужки.

 

Радужка является передним хорошо видимым отделом сосудистой оболочки.

Радужка представляет собой пигментированную круглую пластинку, расположенную между роговицей и хрусталиком. В центре ее находится зрачок (отверстие), края которого покрыты пигментной бахромкой.

Физиологическое значение радужки состоит в том, что она является своеобразной диафрагмой, регулирующей в зависимости от разнообразных условий поступление света в глаз. Оптимальные условия для высокой остроты зрения обеспечиваются при диаметре зрачка 3 мм. Кроме того, радужка принимает участие в ультрафильтрации и оттоке водянистой влаги, а также регулирует постоянство температуры водянистой влаги передней камеры и самой ткани за счет изменения ширины сосудов.

Постоянную окраску радужка приобретает к 10—12 годам жизни ребенка. В местах скопления пигмента образуются «веснушки» радужки. В пожилом возрасте наблюдается депигментация радужки в связи со склеротическими и дистрофическими процессами в стареющем организме и она вновь приобретает более светлую окраску.

В радужке имеются  две мышцы. Круговая мышца, суживающая зрачок, — сфинктер зрачка иннервируется парасимпатическими нервными волокнами. Мышца, расширяющая зрачок, — расширитель зрачка имеет симпатическую иннервацию. У маленьких детей мышцы радужки слабо выражены, дилататор зрачка почти не функционирует.

У детей первого года жизни зрачок узкий (до 2 мм) и слабо  реагирует на свет, слабо расширяется. В юношеском и молодом возрасте он более широкий, чем в среднем (до 4 мм), живо реагирует на свет и другие воздействия. К старости, когда эластичность радужки резко уменьшается, зрачки, наоборот, суживаются и ослабляются их реакции.

Кровоснабжение  радужки осуществляется ветвями задних длинных и передних ресничных артерий, анастомозирующих между собой и дающих возвратные ветви к собственно сосудистой оболочке.

 
 

№ 19 Цилиарное (ресничное) тело: строение, кровоснабжение, функции, значение в физиологии и патологии глаза.

 

Ресничное тело представляет собой, образно говоря, железу внутренней секреции глаза.

Основными функциями ресничного тела являются продукция (ультрафильтрация) водянистой влаги и аккомодация, т. е. приспособление к четкому видению предметов, находящихся на различном расстоянии. Кроме того, ресничное тело участвует в кровоснабжении подлежащих тканей, а также поддержании нормального внутриглазного давления как за счет продукции, так и оттока водянистой влаги.

Ресничное тело является как бы продолжением радужки. Оно не определяется при обычном осмотре и с его строением можно ознакомиться лишь при гонио- и циклоскопии. Ресничное тело представляет собой замкнутое кольцо, расположенное под склерой. Строма ресничного тела покрыта стекловидной мембраной, к которой прикрепляется ресничный поясок (циннова связка), на нем фиксируется хрусталик. Задней границей ресничного тела является зубчатый край, в области которой начинается собственно сосудистая и заканчивается оптически деятельная оболочка — сетчатка.

Кровоснабжение  ресничного тела осуществляется за счет задних длинных ресничных артерий и анастомозов с сосудистой сетью радужки и собственно сосудистой оболочки. Благодаря богатой сети нервных окончаний ресничное тело очень чувствительно к любому раздражению.

У новорожденных  ресничное тело развито недостаточно. Ресничная мышца очень тонкая. Однако ко второму году жизни она в значительной мере увеличивается и благодаря появлению сочетанных сокращений всех глазодвигательных мышц глаз приобретает возможность аккомодировать. С ростом ресничного тела формируется и дифференцируется его иннервация. В первые годы жизни чувствительные нервные окончания выражены слабее, чем двигательные, и это проявляется в безболезненности ресничного тела у детей при воспалительных процессах и травмах. У семилетних детей все взаимоотношения и размеры морфологических структур ресничного тела почти такие же, как и у взрослых.

№ 20 Анатомо-физиологические особенности радужки и цилиарного (ресничного) тела, их значение в развитии патологических процессов.

 

Радужка является передним хорошо видимым отделом сосудистой оболочки.

Радужка представляет собой пигментированную круглую пластинку, расположенную между роговицей и хрусталиком. В центре ее находится зрачок (отверстие), края которого покрыты пигментной бахромкой.

Физиологическое значение радужки состоит в том, что она является своеобразной диафрагмой, регулирующей в зависимости от разнообразных условий поступление света в глаз. Оптимальные условия для высокой остроты зрения обеспечиваются при диаметре зрачка 3 мм. Кроме того, радужка принимает участие в ультрафильтрации и оттоке водянистой влаги, а также регулирует постоянство температуры водянистой влаги передней камеры и самой ткани за счет изменения ширины сосудов.

Постоянную  окраску радужка приобретает к 10—12 годам жизни ребенка. В местах скопления пигмента образуются «веснушки» радужки. В пожилом возрасте наблюдается депигментация радужки в связи со склеротическими и дистрофическими процессами в стареющем организме и она вновь приобретает более светлую окраску.

В радужке имеются две мышцы. Круговая мышца, суживающая зрачок, — сфинктер зрачка иннервируется парасимпатическими нервными волокнами. Мышца, расширяющая зрачок, — расширитель зрачка имеет симпатическую иннервацию. У маленьких детей мышцы радужки слабо выражены, дилататор зрачка почти не функционирует.

У детей первого года жизни зрачок узкий (до 2 мм) и слабо  реагирует на свет, слабо расширяется. В юношеском и молодом возрасте он более широкий, чем в среднем (до 4 мм), живо реагирует на свет и  другие воздействия. К старости, когда эластичность радужки резко уменьшается, зрачки, наоборот, суживаются и ослабляются их реакции.

Кровоснабжение  радужки осуществляется ветвями задних длинных и передних ресничных артерий, анастомозирующих между собой и дающих возвратные ветви к собственно сосудистой оболочке.

Ресничное тело представляет собой, образно говоря, железу внутренней секреции глаза.

Основными функциями ресничного тела являются продукция (ультрафильтрация) водянистой влаги и аккомодация, т. е. приспособление к четкому видению предметов, находящихся на различном расстоянии. Кроме того, ресничное тело участвует в кровоснабжении подлежащих тканей, а также поддержании нормального внутриглазного давления как за счет продукции, так и оттока водянистой влаги.

Ресничное тело является как бы продолжением радужки. Оно не определяется при обычном осмотре и с его строением можно ознакомиться лишь при гонио- и циклоскопии. Ресничное тело представляет собой замкнутое кольцо, расположенное под склерой. Строма ресничного тела покрыта стекловидной мембраной, к которой прикрепляется ресничный поясок (циннова связка), на нем фиксируется хрусталик. Задней границей ресничного тела является зубчатый край, в области которой начинается собственно сосудистая и заканчивается оптически деятельная оболочка — сетчатка.

Кровоснабжение  ресничного тела осуществляется за счет задних длинных ресничных артерий и анастомозов с сосудистой сетью радужки и собственно сосудистой оболочки. Благодаря богатой сети нервных окончаний ресничное тело очень чувствительно к любому раздражению.

У новорожденных  ресничное тело развито недостаточно. Ресничная мышца очень тонкая. Однако ко второму году жизни она в значительной мере увеличивается и благодаря появлению сочетанных сокращений всех глазодвигательных мышц глаз приобретает возможность аккомодировать. С ростом ресничного тела формируется и дифференцируется его иннервация. В первые годы жизни чувствительные нервные окончания выражены слабее, чем двигательные, и это проявляется в безболезненности ресничного тела у детей при воспалительных процессах и травмах. У семилетних детей все взаимоотношения и размеры морфологических структур ресничного тела почти такие же, как и у взрослых.

№ 21 Хориоидея: строение, особенности кровоснабжения и иннервации, функции.

 

Собственно сосудистая оболочка (choroidea) является задним отделом сосудистой оболочки глаза. Ее рисунок виден только при биомикро- и офтальмоскопии Она располагается под склерой. На долю собственно сосудистой оболочки приходится 2/3 всей сосудистой оболочки.

Она принимает  участие в питании бессосудистых структур глаза и фотоэнергетических слоёв сетчатки, а также в ультрафильтрации и оттоке водянистой влаги, поддержании нормального внутриглазного давления. Собственно сосудистая оболочка образована за счет задних коротких ресничных артерий. В переднем отделе сосуды собственно сосудистой оболочки анастомозируют с сосудами большого артериального круга радужки. В заднем отделе вокруг диска зрительного нерва имеются анастомозы между сосудами хориокапиллярной пластинки и капиллярной сетью зрительного нерва, образованной из центральной артерии сетчатки и задних коротких ресничных (цилиарных) артерий.

Благодаря наличию  пигмента собственно сосудистая оболочка образует своеобразную темную камеру — обскуру, препятствующую отражению поступающих через зрачок лучей и обеспечивающую получение четкого изображения на сетчатке. При отсутствии или незначительном количестве пигмента в собственно сосудистой оболочке (чаще у светловолосых лиц) имеется альбинотическая картина глазного дна. В таких случаях отмечается значительное снижение зрительных функций, нарушается внутриглазная терморегуляция.

В собственно сосудистой оболочке содержится, как правило, одинаковое количество крови (до 4 капель). Увеличение объема крови в ней на 1 каплю может вызвать подъем внутриглазного давления более чем на 30 мм рт. ст. Относительно большое количество крови, непрерывно проходящее через собственно сосудистую оболочку,- обеспечивает питание пигментного эпителия сетчатки, где происходят фотохимические процессы,.

Иннервация собственно сосудистой оболочки в основном трофическая. Вследствие отсутствия в ней чувствительных нервных окончаний ее воспаление, травмы и опухоли протекают безболезненно.

 
 

 

№ 22 Хрусталик: строение, функции, возрастные изменения, особенности обменных процессов.

 

Хрусталик является важнейшей оптической средой, на долю которой приходится около 1/3 преломляющей силы глаза (до 20,0 дптр). При сокращении ресничной мышцы и расслаблении ресничного пояска автоматически изменяется кривизна передней поверхности хрусталика, и глаз приспосабливается к ясному видению предметов, расположенных от него на различном расстоянии, т. е. аккомодирует.

Хрусталик представляет собой двояковыпуклое гладкое с ровными контурами чечевицеобразное прозрачное плотноэластичное, бессосудистое тело. Он имеет эктодермальное происхождение, расположен между радужкой и стекловидным телом. Определенное стабильное расположение хрусталика обеспечивается специальным связочным аппаратом, углублением в стекловидном теле и связкой, а также радужкой.

Поверхность хрусталика покрыта стекловидной бесструктурной очень плотной эластичной сильно преломляющей свет капсулой.

В хрусталике содержится до 65% воды, около 30% белков и примерно 5% приходится на неорганические вещества (калий, кальций, фосфор), витамины (С, Вг), глютатион, протеолитические ферменты, липоиды (холестерин и др.),

В различные  периоды развития организма хрусталик растет неравномерно, в результате чего в нем можно обнаружить отдельные зоны с различным коэффициентом преломления лучей (подобно годовым кольцам дерева).

Хрусталик у молодых людей содержит большей частью растворимые белки. Основную роль в окислительно-восстановительных процессах этих белков играет цистеин, входящий в состав сульфгидрильных групп (SH), который при окислении превращается в нерастворимый цистеин. Нерастворимые белки не содержат цистеина, и в них преобладают нерастворимые аминокислоты: лейцин, глицин, тирозин и цистин.

У людей  старше 20 лет белковый состав хрусталика постепенно изменяется, увеличивается количество нерастворимых его фракций — альбуминоидов, и уменьшается количество кристаллинов. В результате в этом возрасте в хрусталике формируется плотное ядро, которое к старости еще более увеличивается, и хрусталик почти полностью теряет свою эластичность. Накопление тирозина ведет к некоторому пожелтению хрусталика, что в функциональном отношении проявляется в поглощении синей (холодной) части светового спектра. Постепенно накапливается холестерин, уменьшается содержание витаминов С и группы В.

Изменение ионного  состава хрусталика, увеличение нерастворимых шлаков и липоидов ведут к уменьшению количества в ней воды. Почти в 2 раза ухудшается направленная проницаемость как переднего, так и особенно заднего отдела сумки хрусталика, обусловливающая в молодом возрасте более высокую способность хрусталика пропускать в него питательные вещества.

Как следствие, понижается способность к аккомодации (пресбиопия) и может наступить выраженная дезорганизация интермедиарного обмена хрусталика, т. е. его помутнение — катаракта.

№ 23 Стекловидное тело: строение, функциональное значение.

 

Стекловидное  тело располагается позади хрусталика и составляет 65% от содержимого и массы глаза. Оно фиксировано в области заднего полюса хрусталика, в плоской части ресничного тела и около диска зрительного нерва. На всем остальном протяжении стекловидное тело лишь прилежит к внутренней пограничной мембране сетчатки.

В стекловидном теле содержится до 98% воды и ничтожно малое коли чество белка и солей. Оно прозрачно, бесцветно, имеет почти шаровидную форму (радиус кривизны 9 мм), желеобразно, эластично, не имеет сосудов и нервов. Жизнедеятельность и постоянство среды стекловидного тела обеспечиваются осмосом и диффузией питательных веществ из водянистой влаги через стекловидную мембрану.

Стекловидное  тело является опорной тканью глазного яблока. Благодаря сравнительному постоянству состава и формы, однородности и прозрачности структуры, эластичности и упругости, тесному контакту с ресничным телом, хрусталиком и сетчаткой стекловидное тело обеспечивает свободное прохождение световых лучей к сетчатке, а также благоприятные условия для поддержания постоянного уровня внутриглазного давления и стабильной формы глазного яблока. Оно пассивно участвует в аккомодации. Кроме того, стекловидное тело выполняет и защитную функцию, предохраняя внутренние оболочки глаза (сетчатку, ресничное тело, хрусталик) от дислокации, особенно при травмах органа зрения.

№ 24 Глазодвигательные мышцы: строение, иннервация, кровоснабжение, функции.

 

Глазодвигательными мышцами являются четыре прямые и две косые, обеспечивающие хорошую подвижность глаз во всех направлениях.

Движение глазных  яблок кнаружи (абдукция) осуществляется латеральной прямой, нижней и верхней косыми мышцами, а кнутри (аддукция) — медиальной прямой, верхней и нижней прямыми мышцами.

Движение глаза  вверх обеспечивается верхней прямой и нижней косой, а вниз — нижней прямой и верхней косой мышцами.

Все прямые и  верхняя косая мышца берут  начало от общего сухожильного кольца, расположенного у вершины глазницы вокруг зрительного нерва. Формирование мышц заканчивается к 2—3 годам, хотя функционируют они с момента рождения.

Кровоснабжение  глазодвигательных мышц обеспечивается мышечными ветвями глазной артерии (или ее магистральных ветвей).

Иннервируются верхняя, нижняя, медиальная прямые и нижняя косая мышцы ветвями глазодвигательного нерва, латеральная прямая — отводящим и верхняя коса» — блоковым нервом. Нервы, как и сосуды, пробадают в мышцы в проксимальном отделе.

 
 

№ 25 Зрительный нерв: особенности строения, кровоснабжение.

 

Зрительный  нерв - вторая пара черепно-мозговых нервов, по которым зрительные раздражения, воспринятые чувствительными клетками сетчатки, передаются в головной мозг.

Зрительный  нерв по своему развитию и строению представляет собой не типичный черепно-мозговой нерв, а как бы мозговое вещество, вынесенное на периферию и связанное с ядрами промежуточного мозга, а через них и с корой больших полушарий. Зрительный нерв берёт начало из ганглиозных клеток (третьих нервных клеток) сетчатки. Отростки этих клеток собираются в диске (или соске) зрительного нерва, находящемся на 3 мм ближе к середине от заднего полюса глаза. Далее пучки нервных волокон пронизывают склеру в области решётчатой пластинки, окружаются менингеальными структурами, образуя компактный нервный ствол. Нервные волокна изолированы друг от друга слоем миелина.

Среди пучков волокон зрительного нерва располагаются  центральная артерия сетчатки (центральная ретинальная артерия и одноимённая вена. Артерия возникает в центральной части глаза, а её капилляры покрывают всю поверхность сетчатки. Вместе с глазной артерией зрительный нерв проходит в полость черепа через зрительный канал, образованный малым крылом клиновидной кости. В полости черепа зрительный нерв от каждого глаза идёт сзади и ближе к середине (медиальнее) на протяжении около 1 см, затем сближается со зрительным нервом противоположной стороны над турецким седлом клиновидной кости, спереди от гипофиза возникает перекрест (хиазма) зрительного нерва, причём переходят с одной стороны на другую только аксоны клеток назальной (носовой) половины сетчатки. Нервы височной стороны каждой сетчатки не пересекаются. Таким образом часть информации от левого глаза поступает в правую половину мозга и наоборот.

Затем нерв разделяется  на три части, которые заканчиваются в подкорковых центрах зрения (латеральное коленчатое тело), где производится первичная переработка зрительной информации и формирование зрачковых реакций. От подкорковых центров зрения нервы веером расходятся по обе стороны височной части головного мозга - начинается центральный зрительный путь (зрительная лучистость Грациоле), Далее нервы собираются вместе, чтобы пройти через внутреннюю капсулу, где концентрируется вся двигательная и сенсорная информация, снабжающая тело. Заканчивается зрительный путь в коре затылочных долей (зрительной зоне) головного мозга.

№ 26 Внутриглазное давление (ВГД): определение, факторы, влияющие на уровень ВГД, понятие об истинном и тонометрическом ВГД, критерии нормы, методы измерения.

 

Внутриглазное давление - это давление, которое оказывает жидкое содержимое глазного яблока на его стенки.

Внутриглазное давление выполняет следующие физиологические  функции: расправляет все внутриглазные оболочки, создает в них тургор, придает правильную сферическую форму глазному яблоку, что необходимо для функционирования оптической системы глаза.

Внутриглазная жидкость - важный источник питания для внутренних структур глаза и служит движущей силой, обеспечивающей как циркуляцию ее, так и обеспечивает обменные процессы между ней и тканевыми структурами глаза.

Внутриглазное давление постоянно  меняется. Различают ритмичные и неправильные колебания офтальмотонуса.

Ритмичные колебания внутриглазного давления связаны с пульсом, дыханием и медленными периодическими изменениями тонуса внутриглазных сосудов.

К ритмичным колебаниям относятся  суточные и сезонные изменения давления в глазу.

У большинства людей офтальмотонус  снижается вечером и ночью  и достигает максимальных значений в утренние часы.

Неправильные колебания тонуса глаза вызываются случайными причинами (сжатие век, надавливание на глаз, резкие колебания артериального давления).

Они могут быть весьма значительными, но кратковременными и неопасными для глаза.

Для измерения  внутриглазного давления в отечественной клинической практике используют тонометры Маклакова, а также калибровочные таблицы для тонометра Маклакова и эластотонометра Филатова - Кальфа, составленные А.П. Нестеровым и М.Б. Вургафтом.

Любой тонометр оказывает  некоторое давление на глаз, деформируя его наружную оболочку и тем самым  повышает его внутриглазное давление. Это повышенное давление, фиксируемое  тонометром, получило название "тонометрическое".

В среднем нормальная величина внутриглазного давления для тонометра массой в 10 граммов составляет от 16 до 26 мм рт. ст., а для тонометра массой 5 граммов - 11-21 мм рт. ст. В вертикальном положении давление ниже, чем в горизонтальном. Возрастные изменения внутриглазного давления невелики, однако в пожилом возрасте увеличиваются его индивидуальные колебания.

Известны также сезонные колебания офтальмотонуса: в большинстве  случаев летом внутриглазное  давление на 1-2 мм рт. ст. ниже, чем зимой.

Водянистая  влага образуется главным образом отростками цилиарного тела, заполняет переднюю и заднюю камеры глаза и по специальной дренажной системе оттекает в вены глаза. Внутриглазная жидкость участвует в обмене веществ хрусталика, роговицы, трабекулярного аппарата угла передней камеры, играет определенную роль в поддержании нормального уровня внутриглазного давления.

№ 27 Центральное зрение: острота центрального зрения, единицы измерения. Принципы устройства таблиц для исследования остроты зрения. Методы определения остроты зрения.

 

Центральным зрением следует считать центральный участок видимого пространства.

Основное предназначение этой функции — служить восприятию мелких предметов или их деталей. Это зрение является наиболее высоким и характеризуется понятием "острота зрения".

Острота зрения — способность глаза различать две точки раздельно при минимальном расстоянии между ними, которая зависит от особенностей строения оптической системы и световоспринимающего аппарата глаза. Центральное зрение обеспечивают колбочки сетчатки, занимающие ее центральную ямку диаметром 0,3 мм в области желтого пятна. По мере удаления от центра острота зрения резко снижается.

Диаметр колбочки определяет величину максимальной остроты зрения. Чем меньше диаметр колбочек, тем  выше острота зрения. Изображения  двух точек, если они попадут на две соседние колбочки, сольются и будут восприниматься в виде короткой линии.

Угол зрения - это угол, образованный точками рассматриваемого объекта и узловой точкой глаза.

Для исследования остроты зрения используют специальные таблицы, содержащие буквы, цифры или значки различной величины, а для детей — рисунки (чашечка, елочка и др.). Их называют оптотипами.

В физиологической  оптике существуют понятия минимально видимого, различимого и узнаваемого. Обследуемый должен видеть оптотип, различать его детали, узнавать представляемый знак или букву. Весь оптотип соответствует углу зрения 5 градусов.

Метод определения  остроты зрения по таблице Головина — Сивцева. Нижний край таблицы должен находиться на расстоянии 120 см от уровня пола. Пациент сидит на расстоянии 5 м от экспонируемой таблицы. Сначала определяют остроту зрения правого, затем — левого глаза. Второй глаз закрывают заслонкой.

Таблица имеет 12 рядов  букв или знаков, величина которых  постепенно уменьшается от верхнего ряда к нижнему. В построении таблицы использована десятичная система: при прочтении каждой последующей строчки острота зрения увеличивается на 0,1. Так, при нормальном зрении, принятом за 1,0, верхняя строка будет видна с расстояния 50 м, а десятая — с расстояния 5 м.

Встречаются люди и с  более высокой остротой зрения — 1,5; 2,0 и более. Они читают одиннадцатую или двенадцатую строку таблицы.

При остроте зрения ниже 0,1 обследуемого нужно приближать к  таблице до момента, когда он увидит ее первую строку. Расчет остроты зрения следует производить по формуле Снеллена:

где d — расстояние, с которого обследуемый  распознает оптотип; D — расстояние, с которого данный оптотип виден  при нормальной остроте зрения.

Минимальной остротой зрения является светоощущение с правильной или неправильной светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю и глаз считается слепым.

Для определения  остроты зрения ниже 0,1 применяют оптотипы, разработанные Б. Л. Поляком, в виде штриховых тестов или колец Ландольта, предназначенных для предъявления на определенном близком расстоянии с указанием соответствующей остроты зрения.

Существует  и объективный (не зависящий от показаний  пациента) способ определения остроты зрения, основанный на оптокинетическом нистагме. С помощью специальных аппаратов обследуемому демонстрируют движущиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм (увиденный врачом), и соответствует остроте зрения исследуемого глаза.

 
 

№ 28 Периферическое зрение: определение понятия, критерии нормы. Методы исследования границ поля зрения на белые и цветные объекты. Скотомы: классификация, значение в диагностике заболеваний органа зрения.

 

Периферическое  зрение является функцией палочкового и колбочкового аппарата всей оптически деятельной сетчатки и определяется полем зрения.  
Поле зрения — это видимое глазом (глазами) пространство при фиксированном взоре. Периферическое зрение помогает ориентироваться в пространстве.

Поле зрения исследуют с помощью периметрии.

Самый простой способ — контрольное (ориентировочное) исследование по Дондерсу. Обследуемый и врач располагаются лицом друг к другу на расстоянии 50—60 см, после чего врач закрывает правый глаз, а обследуемый — левый. При этом обследуемый открытым правым глазом смотрит в открытый левый глаз врача и наоборот. Поле зрения левого глаза врача служит контролем при определении поля зрения обследуемого. На срединном расстоянии между ними врач показывает пальцы, перемещая их в направлении от периферии к центру. При совпадении границ обнаружения демонстрируемых пальцев врачом и обследуемым поле зрения последнего считается неизмененным. При несовпадении отмечается сужение поля зрения правого глаза обследуемого по направлениям движения пальцев (кверху, книзу, с носовой или височной стороны, а также в радиусах между ними). После проверки ноля зрения правого глаза определяют поле зрения левого глаза обследуемого при закрытом правом, при этом у врача закрыт левый глаз.

Наиболее  простым прибором для исследования поля зрения является периметр Ферстера, представляющий собой дугу черного цвета (на подставке), которую можно смещать в различных меридианах.

Периметрию  на широко вошедшем в практику универсальном  проекционном периметре (ППУ) также  проводят монокулярно. Правильность центровки глаза контролируют с помощью окуляра. Сначала проводят периметрию на белый цвет.

Более сложными являются современные периметры, в том числе на компьютерной основе. На полусферическом или каком-либо другом экране в различных меридианах передвигаются или вспыхивают белые либо цветные метки. Соответствующий датчик фиксирует показатели испытуемого, обозначая границы поля зрения и участки выпадения в нем на специальном бланке или в виде компьютерной распечатки.

Нормальными границами  поля зрения на белый цвет считают кверху 45—55°, кверху кнаружи 65°, кнаружи 90°, книзу 60—70°, книзу кнутри 45°, кнутри 55°, кверху кнутри 50°. Изменения границ поля зрения могут происходить при различных поражениях сетчатки, хориоидеи и зрительных путей, при патологии головного мозга.

В последние  годы в практику входит визоконтрастопериметрия, представляющая собой способ оценки пространственного зрения с помощью черно-белых или цветных полос разной пространственной частоты, предъявляемых в виде таблиц или на дисплее компьютера.

Локальные выпадения  внутренних участков поля зрения, не связанных с его границами, называют скотомами.

Скотомы бывают абсолютными (полное выпадение зрительной функции) и относительными (понижение восприятия объекта в исследуемом участке поля зрения). Наличие скотом свидетельствует об очаговых поражениях сетчатки и зрительных путей. Скотома может быть положительной и отрицательной.

Положительную скотому видит сам больной как темное или серое пятно перед глазом. Такое выпадение в поле зрения возникает при поражениях сетчатки и зрительного нерва.

Отрицательную скотому сам больной не обнаруживает, ее выявляют при исследовании. Обычно наличие такой скотомы свидетельствует о поражении проводящих путей.

Мерцательные  скотомы — это внезапно появляющиеся кратковременные перемещающиеся выпадения в поле зрения. Даже в том случае, когда пациент закрывает глаза, он видит яркие, мерцающие зигзагообразные линии, уходящие на периферию. Этот симптом является признаком спазма сосудов головного мозга.

По месту  расположения скотом в поле зрения вьделяют периферические, центральные и парацентральные скотомы.

На удалении 12—18° от центра в височной половине располагается  слепое пятно. Это — физиологическая  абсолютная скотома. Она соответствует  проекции диска зрительного нерва. Увеличение слепого пятна имеет  важное диагностическое значение.

Центральные и парацентральные скотомы выявляют при камниметрии.

Центральные и парацентральные  скотомы появляются при поражении  папилломакулярного пучка зрительного  нерва, сетчатки и хориоидеи. Центральная  скотома может быть первым проявлением  рассеянного склероза.

№ 29 Основные виды нарушений полей зрения при поражении зрительного анализатора, их классификация, характеристика, принципы топической диагностики.

 

Симметричные  выпадения в полях зрения правого  и левого глаза — симптом, свидетельствующий о наличии опухоли, кровоизлияния или очага воспаления в основании мозга, области гипофиза или зрительных трактов.

Гетеронимная  битемпоральная гемианопсия — это симметричное половинчатое выпадение височных частей полей зрения обоих глаз. Оно возникает при поражении внутри хиазмы перекрещивающихся нервных волокон, идущих от носовых половин сетчатки правого и левого глаза.

Гетеронимная биназалъная  симметричная гемианопсия встречается  редко, например при выраженном склерозе сонных артерий, одинаково сдавливающих хиазму с двух сторон.

Гомонимная  гемианопсия — это половинчатое одноименное (правоили левостороннее) выпадение полей зрения в обоих глазах (рис. 4.8). Оно возникает при наличии патологии, затрагивающей один из зрительных трактов. Если поражается правый зрительный тракт, то возникает левосторонняя гомонимная гемианопсия, т. е. выпадают левые половины полей зрения обоих глаз. При поражении левого зрительного тракта развивается правосторонняя гемианопсия.

В начальной стадии опухолевого  или воспалительного процесса может быть сдавлена только часть зрительного тракта. В этом случае регистрируются симметричные гомонимные квадрантные гемианопсии, т. е. выпадает четверть поля зрения в каждом глазу, например пропадает левая верхняя четверть поля зрения как в нравом, так и в левом глазу. Когда опухоль мозга затрагивает корковые отделы зрительных путей, вертикальная линия гомонимных выпадений полей зрения не захватывает центральные отделы, она обходит точку фиксации, т. е. зону проекции желтого пятна. Это объясняется тем, что волокна от нейроэлементов центрального отдела сетчатки уходят в оба полушария головного мозга.

Патологические процессы в сетчатке и зрительном нерве  могут вызывать изменения границ поля зрения различной формы. Для  глаукомы, например, характерно сужение поля зрения с носовой стороны.

Локальные выпадения  внутренних участков поля зрения, не связанных  с его границами, называют скотомами. Их определяют с использованием объекта диаметром 1 мм также в различных меридианах, при этом особенно тщательно исследуют центральный и парацентральный отделы.

Скотомы бывают абсолютными (полное выпадение зрительной функции) и относительными (понижение восприятия объекта в исследуемом участке поля зрения). Наличие скотом свидетельствует об очаговых поражениях сетчатки и зрительных путей.

Скотома может  быть положительной и отрицательной.

Положительную скотому видит сам больной как темное или серое пятно перед глазом. Такое выпадение в поле зрения возникает при поражениях сетчатки и зрительного нерва.

Отрицательную скотому сам больной не обнаруживает, ее выявляют при исследовании. Обычно наличие такой скотомы свидетельствует о поражении проводящих путей.

Мерцательные  скотомы — это внезапно появляющиеся кратковременные перемещающиеся выпадения в поле зрения. Даже в том случае, когда пациент закрывает глаза, он видит яркие, мерцающие зигзагообразные линии, уходящие на периферию. Этот симптом является признаком спазма сосудов головного мозга. Мерцательные скотомы могут повторяться с неопределенной иериодичностью. При их появлении пациент должен немедленно принимать спазмолитические средства.

По месту  расположения скотом в поле зрения вьделяют периферические, центральные и парацентральные скотомы. На удалении 12—18° от центра в височной половине располагается слепое пятно. Это — физиологическая абсолютная скотома. Она соответствует проекции диска зрительного нерва. Увеличение слепого пятна имеет важное диагностическое значение.

Центральные и парацентральные  скотомы выявляют при камниметрии. Пациент фиксирует взглядом светлую  точку в центре плоской черной доски и следит за появлением и исчезновением белой (или цветной) метки, которую врач переметает по доске, и отмечает границы дефектов поля зрения.

Центральные и парацентральные  скотомы появляются при поражении  папилломакулярного пучка зрительного нерва, сетчатки и хориоидеи. Центральная скотома может быть первым проявлением рассеянного склероза.

№ 30 Цветоощущение: определение понятия, критерии нормы, методы исследования цветного зрения.

 

Цветовое зрение — способность глаза к восприятию цветов на основе чувствительности к различным диапазонам излучения видимого спектра. Это функция колбочкового аппарата сетчатки.

Можно условно  выделить три группы цветов в зависимости от длины волны излучения: длинноволновые — красный и оранжевый, средневолновые — желтый и зеленый, коротковолновые — голубой, синий, фиолетовый.

Все многообразие цветовых оттенков можно получить при смешении трех основных цветов — красного, зеленого, синего. Все эти оттенки способен различить глаз человека.

Согласно трехкомпонентной теории Юнга — Ломоносова — Гельмгольца, существует три типа колбочек. Каждому из них свойствен определенный пигмент, избирательно стимулируемый определенным монохроматическим излучением.

В то же время  цветоощущение есть результат воздействия света на все три типа колбочек. Излучение любой длины волны возбуждает все колбочки сетчатки, но в разной степени. При одинаковом раздражении всех трех групп колбочек возникает ощущение белого цвета.

Оценка цветоразличительной  способности глаза. Исследование проводят на специальных приборах — аномалоскопах или с помощью полихроматических таблиц. Общепринятым считается метод, предложенный Е. Б. Рабкиным, основанный на использовании основных свойств цвета.

Цвет характеризуется  тремя качествами:

  • цветовым тоном, который является основным признаком цвета и зависит от длины световой волны;
  • насыщенностью, определяемой долей основного тона среди примесей другого цвета;
  • яркостью, или светлотой, которая проявляется степенью близости к белому цвету (степень разведения белым цветом).

Диагностические таблицы построены по принципу уравнения кружочков разного цвета по яркости и насыщенности. С их помощью обозначены геометрические фигуры и цифры ("ловушки"), которые видят и читают цветоаномалы. В то же время они не замечают цифру или фигурку, выведенную кружочками одного цвета. Следовательно, это и есть тот цвет, который не воспринимает обследуемый.

При выявлении нарушений  цветоощущения составляют карточку обследуемого, образец которой имеется  в приложениях к таблицам Рабкина. Нормальный трихромат прочитает все 25 таблиц, аномальный трихромат типа С — более 12, дихромат — 7-9.

Выявленные нарушения  цветоощущения оценивают по таблице  как цветослабость 1, II или III степени  соответственно на красный (протодефицит), зеленый (дейтеродефицит) и синий (тритодефицит) цвета либо цветослепоту — дихромазия (прот-, дейтер- или тританопия).

С целью диагностики  расстройств цветоощущения в клинической практике также используют пороговые таблицы, разработанные Е. Н. Юстовой и соавт. для определения порогов цветоразличения (цветосилы) зрительного анализатора. С помощью этих таблиц определяют способность уловить минимальные различия в тонах двух цветов, занимающих более или менее близкие позиции в цветовом треугольнике.

 
 

№ 31 Врожденные и приобретенные расстройства цветоощущения: классификация, клиническая характеристика, дифференциальная диагностика.

 

Существуют врожденные и приобретенные расстройства цветового зрения. Около 8 % мужчин имеют врожденные дефекты цветовосприятия. У женщин эта патология встречается значительно реже (около 0,5 %). Приобретенные изменения цветовосприятия отмечаются при заболеваниях сетчатки, зрительного нерва и центральной нервной системы.

В классификации врожденных расстройств цветового зрения Криса—Нагеля красный цвет считается первым и обозначают его "протос", затем идут зеленый — "дейтерос" и синий — "тритос". Человек с нормальным цветовосприятием — нормальный трихромат.

Аномальное восприятие одного из трех цветов обозначают соответственно как прот-, дейтер- и тритано- малию. Прот- и дейтераномалии подразделяют на три типа: тип С — незначительное снижение цветовое приятия, тип В — более глубокое нарушение и тип А — на грани утраты восприятия красного или зеленого цвета.

Полное невосприятие одного из трех цветов делает человека дихроматом и обозначается соответственно как прот-, дейтер- или тританопия. Людей, имеющих такую патологию, называют прот-, дейтер- и тританопами. Невосприятие одного из основных цветов, например красного, изменяет восприятие других цветов, так как в их составе отсутствует доля красного.

Крайне редко встречаются  монохромоты, воспринимающие только один из трех основных цветов. Еще реже, при грубой патологии колбочкового аппарата, отмечается ахромазия — черно-белое восприятие мира. Врожденные нарушения цветовосприятия обычно не сопровождаются другими изменениями глаза, и обладатели этой аномалии узнают о ней случайно при медицинском обследовании. Такое обследование является обязательным для водителей всех видов транспорта, людей, работающих с движущимися механизмами, и при ряде профессий, когда требуется правильное различение цветов.

№ 32 Светоощущение: определение понятия, критерии нормы, методы исследования темновой адаптации. Значение состояния темновой адаптации при различных видах профессиональной деятельности.

 

Светоощущение является функцией палочкового аппарата сетчатки. Это способность глаза к восприятию света и различению степеней его яркости.

Светоощущение считается наиболее чувствительной функцией органа зрения, изменения которой раньше, чем изменения других функций, выявляют при различных патологических процессах, и они, таким образом, служат ранними критериями диагностики многих заболеваний (глаукома, поражения ЦНС, болезни печени, гиповитаминозы, авитаминозы и т. д.).

Принято различать абсолютную светочувствительность, характеризующуюся порогом раздражения, или, другими словами, порогом восприятия света, и различительную светочувствительность, характеризующуюся порогом различения, т. е. порогом восприятия предельной (минимальной) разницы яркости света между двумя освещенными объектами, что позволяет отличать их от окружающего фона. При этом и порог раздражения, и порог различения обратно пропорциональны степени светоощущения, т. е. чем меньше воспринимаемый глазом минимум света или улавливаемая разница в его яркости, тем выше световая чувствительность. Фотореценторы сетчатки глаза человека возбуждаются уже при наличии 1 кванта света, но ощущение света возникает только при наличии 5—8 квантов света.

Способность глаза проявлять световую чувствительность при различной освещенности называется адаптацией. Именно эта функция органа зрения позволяет сохранять высокую светочувствительность и одновременно предохранять фоторецепторы сетчатки от перенапряжения.

Принято различать световую адаптацию, определяющую максимальное количество света, воспринимаемого глазом, и темновую, или так называемую абсолютную, адаптацию, определяющую соответственно минимум воспринимаемого глазом света. Длительность обоих видов адаптации глаза во многом зависит от уровня предшествующей освещенности. Когда глаз адаптируется к возросшей яркости света (световая адаптация), чувствительность фоторецепторов сетчатки особенно интенсивно снижается в первые секунды и достигает нормальных значений к концу 1-й минуты.

При переходе в условия пониженной освещенности зрительный анализатор нуждается в темповой адаптации. Световая чувствительность фоторецепторов относительно быстро увеличивается, через 20—30 мин процесс замедляется, и лишь спустя 50—60 мин адаптация достигает своего максимума.

Простым методом  исследования световой чувствительности является проба Кравкова, основанная на феномене Пуркинье, который заключается в том, что в условиях пониженной освещенности происходит перемещение максимума яркости цветов от красной части спектра к сине-фиолетовой. Днем красный мак и синий василек кажутся одинаково яркими, а в сумерках мак становится почти черным, а василек воспринимается как светло-серое пятно.

Более точное определение светочувствительности производят на регистрирующем полуавтоматическом адаптометре. Исследование выполняют в темноте, длительность его 50—60 мин.

№ 33 Гемералопия: классификация, этиология, клиника, лечение, связь с общей патологией организма.

 

Гемералопия - патологическое снижение зрительного видения при слабом освещении. В народе это состояние получило название "куриная слепота" по образу и подобию зрения дневных птиц, не видящих в темноте.

Виды:

- алиментарная гемералопия,  обусловленная, как правило, недостатком  витамина А в организме;

- симптоматическая гемералопия, связанная с различными заболеваниями нервного аппарата зрительной системы;

- эссенциальная гемералопия,  имеющая наследственный характер.

Этиология и  патогенез

Причины врожденной гемералопии  недостаточно выяснены. Причиной гемералопии являются авитаминоз или гиповитаминоз А, а также B1 и PP. Симптоматическая гемералопия наблюдается при заболеваниях сетчатки и зрительного нерва. В развитии заболевания играет роль процесс восстановления зрительного пурпура.

Клиническая картина

Ослабление зрения и пространственной ориентации в сумерках. Понижение световой чувствительности, нарушение процесса темновой адаптации, сужение полей зрения, особенно на цвета. Диагноз ставят на основании жалоб, клинической картины и данных лабораторных исследований.

При врожденной гемералопии  отмечается стойкое понижение зрения. В случае первичной гемералопии  прогноз благоприятный, при симптоматической гемералопии он зависит от течения  и исхода основного заболевания.

Лечение и профилактика

Врожденная гемералопия лечению не поддается. При симптоматической гемералопии лечат основное заболевание. При первичной гемералопии показано назначение внутрь витамина А: взрослым - по 50-100 тыс. ME в сутки, детям - 1-5 тыс. ME в сутки; одновременно назначают рибофлавин (до 0,02 г в сутки). Профилактикой первичной гемералопии является достаточное потребление витамина А.

 
 

 

№ 34 Бинокулярное зрение: определение понятия, значение в трудовой деятельности человека. Анатомо-физиологические условия осуществления бинокулярного зрения. Методы исследования бинокулярного зрения, критерии нормы.

 

Бинокулярное  зрение — восприятие окружающих предметов двумя глазами — обеспечивается в корковом отделе зрительного анализатора благодаря сложнейшему физиологическому механизму зрения — фузии, т. е. слиянию зрительных образов, возникающих отдельно в каждом глазу (монокулярное изображение), в единое сочетанное зрительное восприятие.

Единый образ  предмета, воспринимаемого двумя глазами, возможен лишь в случае попадания его изображения на так называемые идентичные, или корреспондирующие, точки сетчатки, к которым относятся центральные ямки сетчатки обоих глаз, а также точки сетчатки, расположенные симметрично по отношению к центральным ямкам. В центральных ямках совмещаются отдельные точки, а на остальных участках сетчатки корреспондируют рецепторные поля, имеющие связь с одной ганглиозной клеткой. В случае проецирования изображения объекта на несимметричные, или так называемые диспаратные, точки сетчатки обоих глаз возникает двоение изображения — диплопия.

Для формирования нормального (устойчивого) бинокулярного  зрения необходимы следующие условия:

- Достаточная острота зрения обоих глаз (не менее 0,4), при которой формируется четкое изображение предметов на сетчатке.

- Свободная подвижность  обоих глазных яблок.

- Равные величины изображений  в обоих глазах — изейкония. 

- Нормальная функциональная способность сетчатки, проводящих путей и высших зрительных центров.

- Расположение двух глаз в  одной фронтальной и горизонтальной  плоскости.

Существует  несколько простых способов определения  бинокулярного зрения без использования  приборов.

Первый заключается в надавливании пальцем на глазное яблоко в области век, когда глаз открыт.

Второй способ — опыт с карандашами, или так называемая проба с промахиванием, в ходе которой наличие или отсутствие бипокулярности выявляют с помощью двух обычных карандашей.

Третий способ — проба с "дырой в ладони".

Четвертый способ — проба с установочным движением. Для этого пациент сначала фиксирует взгляд обоими глазами на близко расположенном предмете, а затем один глаз закрывает ладонью, как бы "выключая" его из акта зрения.

Для более точного определения характера зрения (монокулярное, одновременное, неустойчивое и устойчивое бинокулярное) в клинической практике широко используют аппаратные методы исследования, в частности общепринятую методику Белостоцкого — Фридмана с применением четырехточечного прибора "Цветотест ЦТ-1

С целью определения  стереоскопического зрения часто применяют "Fly"-стереотест (с изображением мухи). Для установления величины анизейконии используют фазоразделительный гаплоскоп.

№ 35 Оптическая система глаза: составные части, их характеристика. Понятие о физической рефракции глаза. Роль оптической системы глаза в восприятии зрительных ощущений.

 

Глаз человека представляет собой сложную оптическую систему, которая состоит из роговицы, влаги передней камеры, хрусталика и стекловидного тела.

Рефракция - преломляющая сила оптической системы глаза, выраженная в условных единицах - диоптриях. За одну диоптрию принята преломляющая сила линзы с главным фокусным расстоянием 1 м.

Различают рефракцию физическую и клиническую. Средняя физическая рефракция нормального глаза у новорожденного около 80,0 дптр, а у детей старшего возраста и взрослых примерно 60,0 дптр. Преломляющая сила может варьировать в пределах 52,0 - 68,0 дптр. Физическая рефракция не дает представления о функциональных способностях глаза, поэтому существует понятие клинической рефракции.

Преломляющая  сила глаза зависит от величины радиусов кривизны передней поверхности роговицы, передней и задней поверхностей хрусталика, расстояний между ними и показателей преломления роговицы, хрусталика, водянистой влаги и стекловидного тела.

Оптическую  силу задней поверхности роговицы не учитывают, поскольку показатели преломления ткани роговицы и влаги передней камеры одинаковы (как известно, преломление лучей возможно лишь на границе сред с различными коэффициентами преломления).

Для оценки преломляющей способности любой оптической системы используют условную единицу — диоптрию (сокращенно — дптр). За I дптр принята сила линзы с главным фокусным расстоянием в I м. Диоптрия (D) — величина, обратная фокусному расстоянию (F):

Преломляющую силу выпуклых (собирающих) линз обозначают знаком "плюс", вогнутых (рассеивающих) — знаком "минус", а сами линзы называют соответственно положительными и отрицательными.

Глазу свойственны  различные аберрации — дефекты оптической системы глаза, приводящие к снижению качества изображения объекта на сетчатке. Вследствие сферической аберрации лучи, исходящие из точечного источника света, собираются не в точке, а в некоторой зоне на оптической оси глаза. В результате этого на сетчатке образуется круг светорассеяния. Глубина этой зоны для "нормального" человеческого глаза колеблется от 0,5 до 1,0 дптр.

В результате хроматической аберрации лучи коротковолновой части спектра (сине-зеленые) пересекаются в глазу на меньшем расстоянии от роговицы, чем лучи длинноволновой части спектра (красные). Интервал между фокусами этих лучей в глазу может достигать 1,0 дптр.

Практически во всех глазах имеется еще одна аберрация, обусловленная отсутствием идеальной сферичности преломляющих поверхностей роговицы и хрусталика.

№ 36 Клиническая рефракция глаза: формулировка понятия, определяющие критерии, классификация, возрастные особенности развития.

 

Рефракция - преломляющая сила оптической системы глаза, выраженная в условных единицах - диоптриях. За одну диоптрию принята преломляющая сила линзы с главным фокусным расстоянием 1 м.

Различают рефракцию физическую и клиническую. Средняя физическая рефракция нормального глаза у новорожденного около 80,0 дптр, а у детей старшего возраста и взрослых примерно 60,0 дптр. Преломляющая сила может варьировать в пределах 52,0 - 68,0 дптр. Физическая рефракция не дает представления о функциональных способностях глаза, поэтому существует понятие клинической рефракции.

Для получения четкого изображения важна не только преломляющая сила оптической системы глаза сама по себе, но и ее способность фокусировать лучи на сетчатке. В связи с этим в офтальмологии используют понятие клиническая рефракция, под которой понимают соотношение между преломляющей силой и положением сетчатки или, что то же самое, между задним фокусным расстоянием оптической системы и длиной передпезадней оси глаза.

Различают клиническую  рефракцию двух видов — статическую и динамическую.

Статическая рефракция  характеризует способ получения  изображений на сетчатке в состоянии  максимального расслабления аккомодации (подробнее эта функция, позволяющая менять преломляющую способность глаза, будет рассмотрена далее). Нетрудно заметить, что статическая рефракция — это условное понятие, отражающее лишь структурные особенности глаза как оптической камеры, формирующей изображение на сетчатке.

Для правильного  решения многих вопросов, связанных со зрительной деятельностью в естественных условиях, необходимо иметь представление о функциональных особенностях оптической системы глаза. Судить о них позволяет динамическая рефракция, под которой понимают преломляющую силу оптической системы глаза относительно сетчатки при действующей аккомодации.

 

№ 37 Субъективные и объективные методы определения вида клинической рефракции глаза.

 

Оптическую  коррекцию зрения начинают с определения клинической рефракции. Методы ее исследования делят на объективные, не требующие участия пациента, и субъективные, требующие активного его участия.

К объективным  методам относятся скиаскопия и рефрактометрия, к субъективным - определение рефракции методом подбора корригирующих очковых линз. Обследование пациента обычно начинается с объективных и заканчивается субъективными методами исследования.

Объективные методы исследования клинической рефракции основаны на свойстве глазного дна не только поглощать, но и отражать падающий на него свет.

При скиаскопии обычно используют плоское зеркало с отверстием в центре. Свет, направленный в глаз с помощью зеркала, возвращается, отразившись от глазного дна, в эту же сопряженную точку (отверстие в зеркале), и зрачок видится наблюдателю красным. При повороте зеркала отраженный свет попадает в другую несопряженную точку, и зрачок видится черным. При движении зеркала относительно исследуемого зрачка наблюдатель будет видеть через отверстие в зеркале, как красный цвет зрачка постепенно замещается черной тенью, движение которой зависит от вида клинической рефракции исследуемого глаза.

Рефрактометрия основывается на исследовании отраженной от глазного дна светящейся марки. В одних рефрактометрах добиваются получения резкого изображения марки на глазном дне, другие рефрактометры основаны на феномене Шейнера - раздвоении изображения, проецируемого через разные участки зрачка. В них измерение рефракции достигается совмещением двух изображений в одно путем изменения сходимости лучей. Эти приборы позволяют более точно, по сравнению со скиаскопией, определять степень аметропии, особенно степень астигматизма и угол наклона главных его осей. При этом рефрактометры первого типа точнее определяют сферический компонент рефракции, второго типа - астигматический.

После объективного определения  рефракции переходят к ее уточнению с помощью субъективного метода, основанного на определении силы очковой линзы, которая, будучи помещенной перед глазом, позволяет получить наивысшую для него остроту зрения.

Для субъективного определения рефракции используют устройство для проверки остроты зрения, набор пробных очковых стекол и пробную очковую оправу. Вместо наборов пробных очковых стекол можно использовать фороптеры - устройства для механизированной смены линз перед глазами пациента.

Помимо подбора очковых линз при визометрии есть другие субъективные методы исследования рефракции. Дуохромный тест основан на хроматической аберрации в глазу, заключающейся в том, что лучи с более короткой длиной волны (сине-зеленые) преломляются сильнее, чем с более длинной (красные) и, следовательно, миопический глаз лучше видит в красном свете, а гиперметропический - в зеленом.

В последнее время применяется  лазер-рефрактометрия, основанная на интерференции монохроматичных когерентных лазерных лучей.

№ 38 Клиническая характеристика эмметропии

 

Эмметропическая рефракция наблюдается у 45% взрослого населения земного шара, характеризуется соответствием длины оси глазного яблока и длины фокусного расстояния оптической системы глаза. В состоянии покоя аккомодации главный фокус оптической системы глаза при эмметропии находится на сетчатой оболочке. Острота зрения при этом соответствует норме, т. е. равна 1,0-2,0.

Вариации нормальной остроты зрения зависят от диаметра колбочкового аппарата сетчатки. Если диаметр колбочек равен четырем микронам, острота зрения соответствует 1,0; при диаметре колбочек в три микрона - острота зрения равна 1,5, в том случае, если диаметр колбочек равен два микрона, острота зрения будет 2,0.

Важной характеристикой  эмметропии является положение в пространстве так называемой дальнейшей точки ясного зрения (пунктум ремотум), из которой исходят световые лучи, собирающиеся на сетчатке глаза, находящегося в состоянии покоя, т. е. без включения аккомодации. Дальнейшая точка ясного зрения при эмметропии - это самая дальняя точка ясного зрения, на которую установлен глаз в покое аккомодации, находится практически в бесконечности.

Для глаза бесконечность  представляется и зависит от анатомического строения роговицы, радужки (зрачок равен 2,5-3 мм), диаметра колбочек (в среднем - четыре микрона) и от угла зрения в одну минуту.

Не менее важным является и положение ближайшей точки ясного зрения, то есть точки, из которой исходят световые лучи, собирающиеся на сетчатке при максимальном напряжении аккомодации.

Зная положение ближайшей  и дальнейшей точки ясного зрения, определяют длину аккомодации - т. е. пространство, в пределах которого возможно ясное зрение благодаря аккомодации. У эмметропа длина аккомодации соответствует бесконечности.

Глазное дно  у эмметропа соответствует норме, т. е. сетчатая оболочка прозрачная, диск зрительного нерва четкий, цвет бледно-розовый, сосудистый пучок расположен по центру диска зрительного нерва, соотношение сосудов - артерий к вене - 2:3, т. е. 90 микрон и 120 микрон. Однако имеются некоторые особенности - диск зрительного нерва несколько вытянут в вертикальном направлении (вертикальный размер больше горизонтального на 0,1 мм), и височный отдел диска менее насыщен розовым фоном.

Таким образом, у эмметропа никаких осложнений, связанных с рефракцией, в течение жизни не происходит, кроме физиологичного возрастного изменения аккомодации - пресбиопии.

№ 39 Клиническая характеристика гиперметропии, принципы коррекции.

 

Гиперметропия (дальнозоркость) встречается у 45% взрослого населения земного шара, характеризуется как слабая физическая рефракция, не обеспечивающая фокусировку предметов на сетчатке. Длина оси глазного яблока короче длины фокусного расстояния оптической системы глаза, т. е. лучи идут к сетчатке, но не фокусируются, дойдя до нее. Если бы продлить ход данных лучей, то они сошлись бы за сетчатой оболочкой.

По степени  гиперметропию различают слабую - до 3,0 D; среднюю - от 3,0 до 6,0 D и высокую - более 6,0 D.

Дальнейшая  точка ясного зрения, т. е. при покое аккомодации, отсутствует. В связи с этим у гиперметропов острота зрения снижена тем больше, чем выше степень гиперметропии. Однако, если диаметр колбочек равен двум или трем микронам и гиперметропия слабой степени, острота зрения может соответствовать средней норме.

Ближайшая точка  ясного зрения возможна лишь у гиперметропов со слабой степенью и только у детей.

Гиперметропы  средней и высокой степени не имеют и ближайшей точки ясного зрения, следовательно, отсутствует и длина аккомодации, т. е. они видят плохо и близко, и далеко.

Глазное дно  у гиперметропов соответствует норме, однако, в отличие от эмметропии, диск зрительного нерва округлой формы и цвет его - бледно-розовый - одинаков во всех отделах.

С 40-летнего  возраста у гиперметропов, так же, как и у эмметропов, развиваются клинические признаки пресбиопии.

 
 

Информация о работе Шпаргалки по "Офтальмологии"