Стоматологические композиты

Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 08:34, реферат

Описание

Стоматологические композиты сегодня являются основным классом реставрационного (пломбировочного) материала. Преимуществами композитов перед многими другими пломбировочными материалами являются: высокая прочность, которая позволяет их использовать в любых клинических ситуациях (как на фронтальных, так и на жевательных зубах); высокие и гибкие эстетические характеристики, которые позволя

Работа состоит из  1 файл

22.docx

— 53.48 Кб (Скачать документ)

СТОМАТОЛОГИЧЕСКИЕ  КОМПОЗИТНЫЕ

МАТЕРИАЛЫ  (КОМПОЗИТЫ)

Стоматологические композиты сегодня являются основным классом реставрационного (пломбировочного) материала. Преимуществами композитов перед многими другими пломбировочными материалами являются:  высокая прочность, которая позволяет их использовать в любых клинических ситуациях (как  на фронтальных, так и на жевательных зубах); высокие и гибкие эстетические характеристики, которые позволяют манипулировать цветом реставраций и их блеском в широком диапазоне значений; высокая технологичность при выполнении реставраций; минимальная полимеризационная усадка.

Однако композиты, даже с  максимальным содержанием неорганического  наполнителя, все же имеют некоторую  усадку при отверждении, достаточно высокий коэффициент теплового  расширения и меньшую, чем у зубных тканей, жесткость. Указанные недостатки композитов способствуют возникновению  краевых щелей между пломбой  и зубной поверхностью, просачиванию через эти щели жидкостей полости  рта и, как следствие, разгерметизации  полости. Это приводит либо к выпадению  пломбы (нарушению реставрации), либо к развитию вторичного кариеса. Недостатки композитов устраняются применением адгезивов (адгезивныхсистем; обеспечивают "склеивание" композита с зубной тканью) или других приемов. Поэтому полимеризационная усадка стоматологических композитов в настоящее время не является проблемой в восстановительной стоматологии.

По определению,  композитным материалом называется смесь нескольких разнородных компонентов. В случае стоматологических композитов это смесь наполнителя (как правило, неорганического) и органической матрицы, причем содержание наполнителя весьма значительно (не менее 30% по объему; при меньшем содержании наполнителя материал обычно относят к "малонаполненному полимеру").

Дополнительными компонентами органической матрицы (в исходном состоянии) являются полимерный ингибитор (для  увеличения времени отверждения  и сроков хранения материала), катализатор (в случае композитов химического  отверждения; отдельный компонент  в виде пасты или жидкости), фотоинициатор (в случае композитов светового отверждения),  ускоритель полимеризации (в композитах химического отверждения), светопоглотитель ультрафиолетового диапазона (для улучшения светостабильности) и красители.

Типичными наполнителями стоматологических композитов являются аморфный кремнезем, кварц, бариевое стекло, стронциевое стекло, силикат циркония, силикат титана, оксиды и соли других тяжелых металлов, полимерные частицы. Современные технологии производства и введения наполнителей включают:  улучшенные технологии размола для получения более мелких частиц; технологии получения химически осажденных частиц наполнителей (т.н. золь-гель процесс; позволяет получать гибриды наполнителей); упрочение композитов волокнами (армирование; но это приводит к снижению прозрачности композита); введение пористых (химически осажденных) наполнителей и трехмерных структур (для снижения напряжения усадки);  введение наполнителей с антикариозными свойствами (в первую очередь – выделяющих фтор; однако ограничением является малая проницаемость органической матрицы композита); технологии модификации поверхности частиц наполнителей для возможности сополимеризации с органической матрицей (например, алкоксисиланами); нанотехнологии.

Размер и количество наполнителя  являются основой наиболее распространенной классификации стоматологических композитов. По размеру частиц наполнителя выделяют композиты: макронаполненные, макрофилы (10-100 мкм); мидинаполненные (1-10 мкм); мининаполненные (0,1-1 мкм);   микронаполненные, микрофилы (0,01-0,1 мкм);  гибридные (содержат макро-  и микрочастицы);  гетерогенные (обычные или гибридные композиты с добавками частиц полимерного материала размером 1-20 мкм).

По содержанию частиц наполнителя (степень наполнения стоматологического композита) выделяют сильнонаполненные композиты (более 60% по объему), средненаполненные композиты (40-60% по объему) и слабонаполненнные композиты (30-40% по объему). От размера частиц наполнителя зависят полируемость, устойчивость к истиранию и цветостабильность стоматологического композита. От степени наполнения зависят прочность, степень теплового расширения и полимеризационной усадки.

В последнее время среди  стоматологических композитов выделили так называемые нанокомпозиты, которые условно можно рассматривать как гибридные микрофильные (микрогибридные) материалы. В нанокомпозитах в качестве наполнителя используют частицы "наноразмера" (наномеры), которые имеют размер до 0,1 мкм (100 нм). Наномеры имеют тенденцию к агрегации с образованием нанокластеров, поэтому реально нанокомпозит в качестве наполнителя содержит смесь наномеров и нанокластеров. Нанокластеры ведут себя как отдельные частицы, и современные технологии позволяют управлять их размерами и формой. В результате объединения в одном материале наномеров и нанокластеров материал имеет высокую наполненность (более 75%), что обеспечивает высокую прочность. В обычных гибридных стоматологических композитах в процессе истирания прочные частицы наполнителя покидают поверхность и оставляют за собой "кратеры", что снижает блеск реставрации или пломбы. В случае истирания нанокомпозитов происходит удаление нанокластеров не целиком, а их более мелких составляющих, что позволяет нанокомпозиту обладать более стойким блеском и хорошей полируемостью. Нанокомпозиты последних поколений (например, Эстет-Икс) содержат три фазы наполнителя: наночастицы, фазу мидичастиц и фазу миничастиц. Соотношение трех фаз строго дозировано. Для таких нанокомпозитов предложено название"микроматричные".

Основой органической матрицы стоматологических композитов (до стадии их отверждения) являются мономеры, молекулы которых содержат фрагменты эпоксидной смолы и две метакрилатные группы.  Известно, что метакриловая кислота и ее производные легко вступают в реакции полимеризации (например, с образованием полиметилметакрилата, который обычно называют "оргстеклом"), причем реакция идет по свободно-радикальному механизму. Первый мономер такого типа был запатентован еще в 1959 году (мономер Bis-GMA) и с тех пор Bis-GMA и его производные входят в состав практически всех современных стоматологических композитов и адгезивов. Причиной доминирования мономеров этого типа является относительно низкая полимеризационная усадка (около 6% в чистом виде), быстрое отверждение, низкая летучесть, хорошие механические характеристики конечного полимера.

Инициаторами полимеризации  служат вещества, генерирующие свободные  радикалы при световом облучении  или химическим путем. Поэтому по способу полимеризации (отверждения) стоматологические композиты разделяют  на композиты светового (светокомпозиты, фотокомпозиты, гелеокомпозиты) и химического отверждения (самоотверждаемые).

Химически отверждаемые стоматологические композиты представляют собой системы типа "паста-паста" или "порошок-жидкость". Реакцией, инициирующей полимеризацию (отверждение), служит взаимодействие  (после смешивания исходных компонентов) амина и перекиси бензоила с образованием свободных радикалов. Скорость полимеризации зависит от количества инициаторов, температуры и присутствия ингибиторов. Основное преимущество таких стоматологических композитов – равномерное отверждение, независимо от глубины полости и размеров пломбы.

Стоматологические композиты светового отверждения представляют собой однокомпонентную исходную форму (пасту или жидкотекучий материал). В качестве инициатора полимеризации (отверждения) используется светопоглощающее вещество (фотоинициатор; наиболее традиционный – камфорохинин, максимум спектра поглощения – 475 нм), которое при поглощении света с длиной волны 400-500 нм (синий свет) образует свободные радикалы. Светокомпозиты не требуют смешивания (поэтому более однородны), позволяют до светового отверждения провести моделирование реставрации (пломбы), а отсутствие химически активных добавок (отсутствие аминов) придает им цветоустойчивость и эстетичность. Однако следует учитывать, что степень и глубина полимеризации может быть неоднородна и зависит, в первую очередь, от прозрачности и цвета композита, мощности источника света. Обычно производят послойное нанесение и отверждение стоматологического композита, что позволяет уменьшить усадку и напряжения в матрице и более точно подобрать цвет реставрации (пломбы).

Источником света при отверждении стоматологических композитов, как правило, служат обычные галогенные лампы (галогенные фотополимеризаторы). Их недостатки – малая "полезная" составляющая излучения (менее 2%), необходимость использования интерференционного фильтра, отсекающего паразитное тепловое излучение, и вентилятора (для отвода тепла). В последнее время в качестве источников света все чаще используют излучающие светодиоды, спектр излучения которых практически совпадает со спектром поглощения камфорохинона, и которые лишены всех недостатков галогенных ламп.

Отдельной группой стоматологических  композитов являются реставрационные (пломбировочные) материалы "гибридного" типа - компомеры.

Компомеры – светоотверждаемые реставрационные (пломбировочные) материалы, объединяющие основные преимущества композитов (простота применения, прочность, эстетические свойства) и стеклоиономерных цементов (химическая адгезия к тканям зуба, хорошая биосовместимость, выделение фтора). Термин "компомер" происходит от сочетания слов КОМПОзит и стеклоионоМЕР. Исходная (до полимеризации) органическая матрица компомеров представляет собой мономер (кислотный метакрилат), молекула которого содержит метакрилатные (как у композита) и кислотные (как у стеклоиономерного цемента) группы. Наполнителями компомеров служат частицы фторалюмосиликатного стекла. Кислотные метакрилаты могут одновременно отверждаться по свободно-радикальному механизму (как в случае полимеризации композитов светового отверждения), так и по механизму ионного обмена (как в случае стеклоиономерных цементов). Отверждение компомеров происходит только за счет светоиндуцированной полимеризации. Отверждение по типу стеклоиономерных цементов (требующее присутствия воды для диссоциации кислотных групп) происходит только на участках материала, контактирующих с водой.

Компомеры отличаются от классических гибридных стеклоиономерных цементов, модифицированных (усиленных) композитами. В последних ионообменная реакция, инициирующая отвердение материала, является доминирующей частью всего процесса отверждения. В отличие от них компомеры – это материалы, которые содержат основные компоненты стеклоиономерных цементов в количестве, недостаточном для поддержания ионо-обменной реакции в обычных (безводных) условиях. Несмотря на то, что компомеры были разработаны с целью объединения лучших свойств свотокомпозитов и стеклоиономерных цементов, их поведение более похоже на поведение стоматологических композитов.

Отвлекаясь от основных физических и химических характеристик материалов, весь спектр современных стоматологических  композитов, по особенностям их применения, можно разделить на 5 основных групп.      

1. Универсальные композиты  с одноцветной концепцией восстановления цвета. К этой группе относятся практически все композиты химического отверждения и некоторые светоотверждаемые композиты.

Харизма ППФ (Charisma PPF). Композитный материал химического отверждения. Используют для пломбирования, восстановления коронковой части зуба, фиксации подвижных зубов.

Церам Икс (Ceram X). Светоотверждаемый нанокомпозит для небольших реставраций (пломбирования) жевательных зубов. Материал был оптимизирован для высокоэстетических реставраций с минимальным количеством расцветок.     

2. Универсальные композиты  с двухслойной концепцией воспроизведения цвета. Такие композиты (реставрационные системы) имеют в своем ассортименте один или несколько дентинов, обеспечивающих создание внутренней структуры зуба, и набор эмалевых оттенков (включая прозрачный режущий край), обеспечивающий преломление света на поверхности зуба. Эти материалы позволяют достичь довольно высоких результатов при реставрации фронтальных и жевательных зубов, но все же несколько ограничивают творческие возможности стоматолога в воспроизведении цвета.

Филтек Z 250 (Filtek Z 250). Эстетический светоотверждаемый микрогибридный композит. Содержит повышенное количество частиц меньшего размера. Используется для пломбирования полостей всех типов во фронтальных и жевательных зубах, выполнения виниров,  реставрации коронковой части зуба, шинирования. Имеет 15 различных оттенков.

Спектрум ТРН  (Spectrum TPH). Светоотверждаемый микрогибридный композит. Наполнитель (бариевое стекло и спеченный кремний) имеет 2 фракции 0,04-0,4 мкм и 0,8-1 мкм с наполнением 55-60% по объему. Благодаря удачному сочетанию эстетических и механических свойств, используют для реставрации (пломбирования) всех видов дефектов твердых тканей зубов. На этом материале выросло целое поколение врачей-стоматологов, освоивших основы техники косметической реставрации.     

3. Реставрационные материалы  с трехслойной концепцией воспроизведения цвета. Реставрационные (пломбировочные) материалы этой группы являются "художественными" системами. В ассортименте оттенков присутствует широкий спектр опановых (непрозрачных) оттенков дентина, основные оттенки тела зуба и набор прозрачных эмалей.

Эстет-Икс (Estet-X). Светоотверждаемый микроматричный композитный материал. Наполнитель представлен в виде трех фаз (до 2,5 мкм, 0,4-0,8 мкм и наночастицы 0,01-0,02 мкм), соотношение которых строго дозировано. Имеет чрезвычайно высокие эстетические возможности. Используют врачи-стоматологи, ориентирующиеся прежде всего на достижение высокого эстетического результата. При той же прочности и цветостабильности, что и, например, Спектрум ТРН, стирается в 3 раза меньше, не требует обновления блеска и имеет в 2 раза меньшую усадку (что оправдывает высокую стоимость этого материала).

Филтек Суприм (Filtek Supreme). Светотверждаемый нанокомпозитный материал.  Наполнитель (силикат циркония) представлен в виде наночастиц (размером 0,02-0,75 мкм) и нанокластеров. Технология позволяет управлять размерами нанокластеров (создавать заданной величины) и этим способом влиять на прочность, полируемость и полимеризационную усадку материала. Универсальный реставрационный (пломбировочный) материал, сочетающий механические свойства микрогибридов и эстетику микрофилов.

Выбор врача-стоматолога в пользу конкретного материала из этих трех групп связан с совокупностью нескольких факторов (цена материала, стоимость работы, время работы с пациентом и квалификация врача, конечный эстетический результат). Для относительно простой реставрации (пломбирования) преимущественно используют стоматологические композиты 1-й и 2-й групп. Если врач-стоматолог не сильно ограничен во времени, а его пациент менее ограничен в средствах, он может использовать материалы 3-й группы, предоставляющие ему более широкие возможности.      

4. Стоматологические композитные  материалы для реставрации (пломбирования) жевательной группы зубов. Основные требования – высокая устойчивость к истиранию и к деформации под жевательной нагрузкой.

КвиксФил (Quixfil). Светоотверждаемый композитный материал, предназначенный специально для реставрации (пломбирования) жевательных зубов. Имеет высокую (на 30% большую, чем большинство других композитов) наполненность, благодаря чему обладает повышенной твердостью и низкой полимеризационной усадкой. Наполнитель (стекло) представлен в виде двух фракций: 1 и 10 мкм. Специально разработанная органическая матрица (мономер) обеспечивает  большую глубину полимеризации (толщина полимеризуемого слоя – до 2,5 мм). Высокий уровень прозрачности материала делает реставрации (пломбы) слегка отличными от естественной эмали, что позволяет без труда определить локализацию материала при сложном восстановлении боковых зубов. Имеет один универсальный оттенок.    

Информация о работе Стоматологические композиты