Автор работы: Пользователь скрыл имя, 18 Февраля 2013 в 16:30, реферат
Суспензии представляют собой микрогетерогенные дисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой. Граница раздела фаз в таких системах видна невооруженным глазом. Размеры частиц в суспензиях не превышают 100 мкм. В фармацевтических суспензиях размер частиц колеблется в пределах 30-50 мкм. Суспензии образуются в следующих случаях:
Введение
1. Теоретическая часть. Технология производства суспензий
1.1 Требования, предъявляемые к суспензиям
1.2 Технология изготовления суспензий дисперсионным методом
1.3 Технология изготовления суспензий конденсационным методом
2. Практическая часть. Технология суспензионных лекарственных форм
2.1 Оценка качества суспензий. Перспективные стабилизаторы в технологии суспензий
2.2 Технология некоторых суспензионных лекарственных форм
2.3 Выводы и предложения
Заключение
Список использованной литературы
Министерство здравоохранения Украины
Запорожский государственный медицинский университет
Кафедра технологии лекарств
Фармацевтического факультета
Запорожье, 2013 г.
План
1. Теоретическая часть.
Технология производства
1.1 Требования, предъявляемые к суспензиям
1.2 Технология изготовления
суспензий дисперсионным
1.3 Технология изготовления
суспензий конденсационным
2. Практическая часть.
Технология суспензионных
2.1 Оценка качества суспензий. Перспективные стабилизаторы в технологии суспензий
2.2 Технология некоторых
суспензионных лекарственных
2.3 Выводы и предложения
Заключение
Список использованной литературы
Суспензии представляют собой микрогетерогенные дисперсные системы с твердой дисперсной фазой и жидкой дисперсионной средой. Граница раздела фаз в таких системах видна невооруженным глазом. Размеры частиц в суспензиях не превышают 100 мкм. В фармацевтических суспензиях размер частиц колеблется в пределах 30-50 мкм. Суспензии образуются в следующих случаях:
а) прописаны лекарственные вещества, не растворимые в жидкой дисперсионной среде (воде), например сера, камфора;
б) завышен предел растворимости веществ, например, в воде – кислота борная в концентрации более 5%, натрия гидрокарбонат – более 8%;
в) назначены лекарственные вещества, порознь растворимые, но образующие при взаимодействии нерастворимые соединения, например при взаимодействии кальция хлорида с кислотой глицирризиновой в растворе эликсира грудного – в осадке образуется кальциевая соль глицирризиновой кислоты;
г) в результате замены растворителя, например добавление в микстуры экстракционных препаратов или спирта.
С точки зрения биофармации, суспензии как лекарственная форма, имеют преимущества по сравнению с другими лекарственными формами, вследствие реализации ряда фармацевтических факторов, таких как: физическое состояние лекарственного вещества, вспомогательные вещества и другие.
Суспензии — жидкая лекарственная форма, содержащая в качестве дисперсной фазы одно или несколько измельченных порошкообразных лекарственных веществ, распределенных в жидкой дисперсионной среде.
В лекарственных веществах
в форме суспензий
- введение нерастворимых
веществ в мелкодисперсном
- лекарственные вещества
в форме суспензий обладают, как
правило, пролонгированным
-
в некоторых случаях при
Различают суспензии для внутреннего, наружного и парентерального применения. Суспензии для парантерального применения вводят только внутримышечно. Они должны соответствовать статье «Инъекции», если нет других указаний в частных статьях.
Суспензии могут быть готовыми к применению, а также в виде порошков или гранул для суспензий, к которым перед применением прибавляют воду или другую подходящую жидкость; количество воды или другой жидкости должно быть указано в частных статьях.
В качестве вспомогательных используют вещества, увеличивающие вязкость дисперсионной среды, поверхностно-активные и буферные вещества, корригенты, консерванты, антиокислители, красители и другие, разрешенные к медицинскому применению. Перечень вспомогательных веществ должен быть указан в частных статьях. Не допускается изготовление суспензий, содержащих ядовитые вещества.
Отклонение в содержании действующих веществ в 1 г (мл) суспензии не должно превышать±10%.
Перед
употреблением суспензии
Маркировка. Для суспензий, полученных из порошков или гранул, должны быть указаны условия и время хранения после прибавления воды. Все виды суспензий должны иметь указание: «Перед употреблением взбалтывать».
Упаковка. С соответствующим дозирующим устройством.
Хранение. В упаковке, обеспечивающей стабильность при хранении и транспортировании и, если необходимо, в прохладном месте.
Суспензии, как и другие гетерогенные системы, характеризуются кинетической (седиментационной) и агрегативной (конденсационной) неустойчивостью.
Кинетическая (седиментационная) устойчивость это способность дисперсной системы сохранять равномерное распределение частиц по всему объему дисперсной фазы. Суспензии являются кинетически неустойчивыми системами. Частицы суспензий по сравнению с истинными и коллоидными растворами имеют довольно крупные размеры, которые под воздействием силы тяжести обладают способностью к седиментации, т.е. опускаются на дно или всплывают, в зависимости от относительной плотности дисперсной фазы и дисперсионной среды.
Кинетическая
устойчивость в дисперсных системах
характеризуется законом
υ =2r²g(d1 – d2) ⁄ 9η,
где υ - скорость оседания частиц, м/с;
r - радиус частиц, м;
d1 - плотность дисперсной фазы, г/м3;
d2 - плотность среды, г/м3;
η - вязкость среды, Па·с;
g - ускорение свободного падения, м/с2.1
Закон
Стокса применим для монодисперсных
систем, в которых частицы имеют
сферическую форму. В суспензиях,
где частицы не имеют сферической
формы и процесс седиментации
более сложен, закон Стокса описывает
процесс седиментации лишь в приближенном
виде. Исходя из формулы Стокса, скорость
седиментации прямо пропорциональна
квадрату радиуса частиц, разности
плотностей фазы и среды, а также
обратно пропорциональна
Следовательно, для уменьшения скорости седиментации, т.е. для повышения седиментационной устойчивости суспензии можно использовать следующие методы:
-выбор
дисперсионной среды с
-уменьшение
размеров частиц за счет более
тонкого измельчения
-выбор дисперсионной среды с высокой вязкостью.
Обычно для повышения седиментационной устойчивости суспензий используется второй метод уменьшение размеров частиц лекарственного вещества за счет более тонкого его измельчения. Малый размер частиц лекарственного вещества обусловливает их большую удельную поверхность, что приводит к увеличению свободной поверхностной энергии. Измельчение частиц до бесконечно малых размеров невозможно (2-ой закон термодинамики). Из следствия этого закона, свободная поверхностная энергия частицы стремится к минимуму. Уменьшение свободной поверхностной энергии может происходить за счет агрегации (слипания, объединения) частиц.
Агрегативная (конденсационная) устойчивость это способность частиц дисперсной фазы противостоять агрегации (слипанию). Агрегационная устойчивость частиц обеспечивается наличием на их поверхности электрического заряда (вследствие диссоциации, адсорбции ионов и пр.).
Препятствуют агрегации также наличие на частицах оболочки из ВМС, ПАВ, сольватной оболочки.
При большом запасе поверхностной энергии в суспензиях может происходить процесс флокуляции (осаждения дисперсной фазы в виде конгломератов - флокул), при котором вследствие уменьшения агрегативной устойчивости уменьшается кинетическая устойчивость суспензии.
Восстановить дисперсную систему в таком случае удается путем взбалтывания. Флокулы по своей физико-химической структуре могут быть аморфные (плотные, творожистые, хлопьевидные, волокнистые) и кристаллические. В последнем случае восстановить дисперсную систему взбалтыванием не удается. Для повышения агрегативной устойчивости суспензий необходимо обеспечить наличие на поверхности частиц лекарственного вещества электрических зарядов, что достигается добавлением в суспензию вспомогательных веществ.
В качестве вспомогательных веществ при получении суспензий (стабилизаторов) используются высокомолекулярные вещества (ВМС), поверхностно-активные вещества и др.
Механизм стабилизирующего действия ПАВ и ВМС заключается в том, что они адсорбируются на поверхности твердых частиц лекарственного вещества и, вследствие дифильности ПАВ (т.е. наличия полярной и неполярной частей в молекуле) и наличия диполей (положительного и отрицательного заряда) в молекуле ВМС. Молекулы стабилизатора ориентируются на границе раздела фаз таким образом, что своей полярной (или заряженной) частью они обращены к полярной фазе, а неполярной частью к неполярной, образуя, таким образом, на границе раздела фаз мономолекулярный слой. Вокруг этого слоя ориентируются молекулы воды, образуя гидратную оболочку, при этом снижаются силы поверхностного натяжения на границе раздела фаз, что ведет к повышению агрегативной устойчивости суспензии.2
Для повышения устойчивости при хранении изготавливаемых в условиях заводского производства суспензий, таким образом, можно использовать два способа: максимальное измельчение лекарственного вещества и введение специально подобранных вспомогательных веществ (стабилизаторов).
Существует два метода
получения суспензий: дисперсионный
и конденсационный. Дисперсионный
способ получения суспензий основан
на измельчении частиц лекарственного
вещества механическими способами,
с помощью ультразвука и
Получение суспензий в
условиях заводского производства осуществляется
различными способами: интенсивным
механическим перемешиванием с помощью
быстроходных мешалок и роторно-
При изготовлении суспензий дисперсионным методом наиболее пристальное внимание относят к измельчению лекарственного вещества, так как именно этот фактор в наибольшей степени влияет на устойчивость образующейся суспензии. При изготовлении суспензии этим методом лекарственное вещество (твердая фаза) предварительно измельчают до мелкодисперсного состояния.
Для «сухих» суспензий, представляющих собой смесь лекарственного и вспомогательных веществ, образующих суспензию после добавления воды (в аптечных или домашних условиях), каждый ингредиент измельчают отдельно и просеивают через тонкое сито. После смешения ингредиентов во избежание расслоения смесь вновь просеивают.