Полупроводниковые приборы

Автор работы: Пользователь скрыл имя, 20 Марта 2012 в 17:21, контрольная работа

Описание

В пограничном слое двух полупроводников с различным характером электропроводности при одном направлении тока дырки и электроны движутся навстречу друг другу, и при их встрече происходит рекомбинация. В цепи, таким образом, протекает ток (рис. 1 а).
Если изменить направление тока на обратное (рис.1 б), то изменится и направление движения дырок и электронов. Носители зарядов при этом не приближаются к граничной поверхности полупроводников, а удаляются от нее.

Работа состоит из  1 файл

Урок 49 лекция 38.doc

— 597.50 Кб (Скачать документ)

Примеры

1. Заменим резистор 1,3 кОм 0,125 Вт из первого примера последовательной сборкой.

1,3 кОм = 1 кОм + 100 Ом + 100 Ом + 100 Ом

Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

I = U / (Rрез.+ Rсветодиода), где

Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

I = 12 / (1300 + 200) = 0,008 А

Теперь вычисляем фактическое падение напряжения на резисторах и светодиоде:

Uпад.рез_1000 = Rрез_1000 * I = 1000 * 0,008 = 8 В

Uпад.рез_100 = Rрез_100 * I = 100 * 0,008 = 0,8 В

Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В

Теперь у нас есть все данные для расчёта мощностей:

Pрез_1000 = (12 −(0,8 + 0,8 + 0,8 + 1,6))2 / 1000 = 0,064 Вт

Pрез_100 = (12 −(8 + 0,8 + 0,8 + 1,6))2 / 100 ≈ 0,0064 Вт

Итого, исходя из стандартных мощностей резисторов, получаем 1 кОм 0,125 Вт и 3 резистора 100 Ом по 0,05 Вт. Включив резисторы указанного номинала последовательно, мы получим общее сопротивление 1,3 кОм нужной нам мощности.

2. Заменим резистор 30 кОм 2 Вт из второго примера параллельной сборкой.

Занеся формулу R = 1 / (1 / R1 + 1 / R2 + 1 / R3) в Excel, выясним, что
30 кОм ≈ параллельному соединению 68 кОм, 100 кОм и 110 кОм. Точнее это будет сопротивление 29589 Ом.

Рассчитаем минимальные мощности для каждого резистора. Для этого посчитаем фактическое падение напряжения на каждом резисторе, для чего сначала посчитаем фактический ток, ибо он будет отличаться от номинального светодиодного 0,01 А за счёт коэффициента надёжности и соответствующего увеличения сопротивления. Итак,

I = U / (Rрез.+ Rсветодиода), где

Rсветодиода = Uпад.номин. / Iномин. = 2 / 0,01 = 200 Ом, значит ток в цепи будет:

I = 220 / (29589 + 200) ≈ 0,008 А

Теперь вычисляем фактическое падение напряжения на светодиоде:

Uпад.светодиода = Rсветодиода * I = 200 * 0,008 = 1,6 В

Теперь у нас есть все данные для расчёта мощностей:

Pрез_68 = (220 −1,6)2 / 68000 ≈ 0,70 Вт

Pрез_100 = (220 –1,6)2 / 100000 ≈ 0,48 Вт

Pрез_110 = (220 –1,6)2 / 110000 ≈ 0,44 Вт

Итого, исходя из стандартных мощностей резисторов, получаем 68 кОм 1 Вт, 100 и 110 кОм по 0,5 Вт. Включив резисторы указанного номинала параллельно, мы получим общее сопротивление 30 кОм нужной нам мощности.

Указанные выше параллельный и последовательный способы можно комбинировать, без проблем создавая вот такие сборки, которые также легко рассчитываются при их разбивании на фрагменты:

 

 

 

 

Теперь определимся с подключением нескольких светодиодов. Подключаем 2 красных последовательно. 2 шт * 2,0 = 4,0 В. Питающее напряжение - 12 В, следовательно лишних - 8,0 В. R = 8,0 / 0,02 = 400 Ом. P= 8,0 * 0,2 = 0,16 Вт.

Если 6 штук - 6шт. * 2,0В = 12 В. Сопротивление не требуется.

Аналогично, например, с синими (3,0в) : 3шт x 3,0 В = 9,0В. 12,0 В - 9,0 В = 3,0 В. R = 3,0 / 0,02 = 150 Ом. P = 3,0 * 0,02 = 0,06 Вт.

Если у нас 3 батарейки по 1,5 вольта и, например, один синий светодиод на который надо подать 3,5 В, чтобы получить требуемый ток в 20мА (0,02А): 3 шт * 1,5 в = 4,5в (напряжение питания). Лишних: 4,5 В - 3,5 В = 1,0 В. R = U / I = 1,0 В / 0,02 А = 50 Ом. P = U * I = 1,0 В * 0,02 А = 0,02 Вт

Теперь рассмотрим более сложный вариант. Надо подключить к 12В 30 штук красных по 2,0В. На 12В можем подключить только 6 штук без сопротивлений, соединяем 6 штук последовательно и подключаем - светится. Соединяем еще 6 штук и присоединяем параллельно к первым. При этом через каждые 6 шт будет течь ток в 0,02А. У нас получится 5 цепочек с общим током 5 * 0,02А = 0,1А (уже батареек хватит не на долго).

Надо подключить к 12В 30 штук зеленых по 3,5В. На 12В мы можем подключить: 12В / 3,5В = 3,43 штуки. Мы не будем отрезать от четвертого светодиода 0,43 части, а подключим 3 штуки + сопротивление: 3штуки * 3,5В = 10,5 В. Лишнее напряжение: 12,0 В - 10,5 В = 1,5 В. Сопротивление R = 1,5В / 0,02А = 75 Ом при мощности P = 1,5 * 0,02 = 0,03 Вт. Если вдруг одному светодиоду в процессе монтажа были случайно выдраны ноги и их осталось всего 29 штук, то соединяем 9 цепочек по 3 штуки, и одну цепочку из 2-х штук + сопротивление R = 250 Ом, P = 0,1Вт.

Как получить белый свет с использованием светодиодов?
Существует три способа получения белого света от светодиодов. Первый - смешивание цветов по технологии RGB. На одной матрице плотно размещаются красные, голубые и зеленые светодиоды, излучение которых смешивается при помощи оптической системы, например линзы. В результате получается белый свет. Второй способ заключается в том, что на поверхность светодиода, излучающего в ультрафиолетовом диапазоне (есть и такие), наносится три люминофора, излучающих, соответственно, голубой, зеленый и красный свет. Это похоже на то, как светит люминесцентная лампа. И наконец в третьем способе желто-зеленый или зеленый плюс красный люминофор наносятся на голубой светодиод, так что два или три излучения смешиваются, образуя белый или близкий к белому свет.

Можно ли регулировать яркость светодиода?
Яркость светодиодов очень хорошо поддается регулированию, но не за счет снижения напряжения питания - этого-то как раз делать нельзя, - а так называемым методом широтно-импульсной модуляции (ШИМ), для чего необходим специальный управляющий блок (реально он может быть совмещен с блоком питания и конвертором, а также с контроллером управления цветом RGB-матрицы). Метод ШИМ заключается в том, что на светодиод подается не постоянный, а импульсно-модулированный ток, причем частота сигнала должна составлять сотни или тысячи герц, а ширина импульсов и пауз между ними может изменяться. Средняя яркость светодиода становится управляемой, в то же время светодиод не гаснет. Небольшое изменение цветовой температуры светодиода при диммировании несравнимо с аналогичным смещением для ламп накаливания.

Чем определяется срок службы светодиода?
Считается, что светодиоды исключительно долговечны. Но это не совсем так. Чем больший ток пропускается через светодиод в процессе его службы, тем выше его температура и тем быстрее наступает старение. Поэтому срок службы у мощных светодиодов короче, чем у маломощных сигнальных, и составляет в настоящее время 20 - 50 тысяч часов. Старение выражается в первую очередь в уменьшении яркости. Когда яркость снижается на 30% или наполовину, светодиод надо менять.

"Портится" ли цвет светодиода с течением времени?
Старение светодиода связано не только со снижением его яркости, но и с изменением цвета. В настоящее время нет стандартов, которые позволили бы выразить количественно изменение цвета светодиодов в процессе старения и сравнить с другими источниками.

Не вреден ли светодиод для человеческого глаза?
Спектр излучения светодиода близок к монохроматическому, в чем его кардинальное отличие от спектра солнца или лампы накаливания. Хорошо это или плохо - доподлинно не известно, потому что, насколько я знаю, серьезных исследований в этой области нигде не проводилось. Какие-либо данные о вредном воздействии светодиодов на человеческий глаз отсутствуют.

 

Классификация после 1982 года.

1 знак    Г или 1  -  для германия или его соединений

              К или 2  - для кремния или его соединений

              А или 3  -  для соединений галлия

              И или 4  - для соединений индия

2 знак    - буква, определяющая подкласс (или группу) приборов

              Д  - диоды выпрямительные и импульсные

              Ц  - выпрямительные столбы и блоки

              В  - варикапы

              С  - стабилитроны

              Л  - излучающие оптоэлектронные приборы

              О  - оптроны

              Н  - диодные тиристоры

              У  - триодные тиристоры

3 знак  - цифра, определяет основные функциональные возможности

               прибора

   Для Д :      1,2,3  - мощность диода ( Iпр )

                        4-9    - для импульсных диодов по времени восстановления

    Для Ц :       1 - Iпр < 0,3 А                     для столбов

        2  -  0,3 <  Iпр  < 10 А

                        3  -  Iпр < 0,3 А                   для блоков

        4  -  0,3 <  Iпр  < 10 А

    Для С :     1  -  Р < 0,3 Вт                      Uст < 10 В

                     2  -  Р < 0,3 Вт          10 В < Uст < 100 В

                     3  -  Р < 0,3 Вт                      Uст > 100 В

                     4  -  Р = 0,3 - 5 Вт                 Uст < 10 В

                     5  -  Р = 0,3 - 5 Вт     10 В < Uст < 100 В

                     6  -  Р = 0,3 - 5 Вт                 Uст > 100 В

                     7  -  Р = 5 - 10 Вт                  Uст < 10 В

                     8  -  Р = 5 - 10 Вт       10 В < Uст < 100 В

                     9  -  Р = 5 - 10 Вт                   Uст > 100 В

4 знак  -      число, обозначающее порядковый номер разработки

                    технологического типа от 01 до 99 и от 101 до 999

 

5 знак  -  буква, условно определяющая классификацию приборов (разбраковка по параметрам), изготовленных по единой технологии (буквы русского алфавита, кроме З, О, Ч, Ы, Ш, Щ, Ю, Я, Ь, Ъ, Э)

 



Информация о работе Полупроводниковые приборы