Методы оценки рисков

Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 12:46, контрольная работа

Описание

Актуальность финансового управления рисками на международных рынках связана с тем, что риски увеличиваются, произошла их глобализация, сократились ценовые спрэды при том, что увеличилась волатильность валют, процентных ставок, курсов ценных бумаг и цен на сырьевые товары. В целом, финансовые рынки стали более нестабильными, сложными и рискованными.

Содержание

Введение 2
1. Понятия неопределенности и риска 3
2. Классификация инвестиционных рисков 4
3. Методы анализа и оценка уровня инвестиционного риска 6
4. Оценка уровня риска на основе теории нечетких множеств 14
Заключение 18
Список использованной литературы 20

Работа состоит из  1 файл

сарансков дудко.doc

— 122.50 Кб (Скачать документ)

3. задачи исследования чувствительности, устойчивости результативных, критериальных показателей по отношению к варьированию исходных параметров (распределению вероятностей, областей изменения тех или иных величин и т. и.). Это необходимо в связи с неизбежной неточностью исходной информации и отражает степень достоверности полученных при анализе проектных рисков результатов.

Анализ проектных рисков производится на основе математических моделей принятия решений и поведения проекта, основными из которых являются:

        стохастические (вероятностные) модели;

        лингвистические (описательные) модели;

        нестохастические (игровые, поведенческие) модели.

В мировой практике инвестиционного менеджмента используются различные методы оценки эффективности инвестиционных проектов в условиях риска и неопределенности, к наиболее распространенным из которых следует отнести следующие методы:

        метод корректировки ставки дисконтирования (премия за риск);

        метод достоверных эквивалентов (коэффициентов достоверности);

        анализ чувствительности показателей эффективности (NPV, IRR и др.);

        метод сценариев;

        методы теории игр (критерий максимина, максимакса и др.);

        построение «дерева решений»;

        имитационное моделирование по методу Монте-Карло;

Метод корректировки ставки дисконтирования предусматривает приведение будущих денежных потоков к настоящему моменту времени по более высокой ставке, но не дает никакой информации о степени риска (возможных отклонениях конечных экономических результатов). При этом получаемые результаты существенно зависят только от величины надбавки (премии) за риск. Также недостатком данного метода являются существенные ограничения возможностей моделирования различных вариантов развития инвестиционного проекта, которые сводятся к анализу зависимости показателей NPV, IRR и др. от изменений одного показателя — нормы дисконта. Таким образом, в данном методе различные виды неопределенности и риска формализуются в виде премии за риск, которая включается в ставку дисконтирования.

Метод достоверных эквивалентов (коэффициентов достоверности) в отличие от предыдущего метода предполагает корректировку не нормы дисконта, а денежных потоков инвестиционного проекта в зависимости от достоверности оценки их ожидаемой величины. С этой целью рассчитываются специальные понижающие коэффициенты αt для каждого планового периода t. Данный метод имеет несколько вариантов в зависимости от способа определения понижающих коэффициентов. Один из способов заключается в вычислении отношения достоверной величины чистых поступлений денежных средств по безрисковым вложениям (операциям) в период t, к запланированной (ожидаемой) величине чистых поступлений от реализации инвестиционного проекта в этот же период t. Очевидно, что при таком способе определения коэффициентов достоверности денежные потоки от реализации инвестиционного проекта интерпретируются как поступления от безрисковых вложений, что приводит к невозможности проведения анализа эффективности инвестиционного проекта в условиях неопределенности и риска.

Другой вариант данного метода заключается в экспертной корректировке денежных потоков с помощью понижающего коэффициента, устанавливаемого в зависимости от субъективной оценки вероятностей. Однако интерпретация коэффициентов достоверности как субъективных вероятностей, свойственная данному подходу, не соответствует экономической сущности оценки риска. Применение коэффициентов достоверности в такой интерпретации делает принятие инвестиционных решений произвольным и при формальном подходе может привести к серьезным ошибкам и, следовательно, к последующим негативным последствиям для предприятия.

Метод анализа чувствительности показателей эффективности инвестиционного проекта (NPV, IRR и др.) позволяет на количественной основе оценить влияние на инвестиционный проект изменения его главных переменных. Главный недостаток данного метода заключается в том, что в нем допускается изменение одного параметра инвестиционного проекта изолированно от всех остальных, т. е. все остальные параметры проекта остаются неизменными (равны спрогнозированным величинам и не отклоняются от них). Такое допущение редко соответствует действительности.

Метод сценариев позволяет преодолеть основной недостаток метода анализа чувствительности, так как с его помощью можно учесть одновременное влияние изменений факторов риска. К основным недостаткам практического использования метода сценариев можно отнести, во-первых, необходимость выполнения достаточно большого объема работ по отбору и аналитической обработке информации для каждого возможного сценария развития, и как следствие, во-вторых, эффект ограниченного числа возможных комбинаций переменных, заключающейся в том, что количество сценариев, подлежащих детальной проработке ограничено, так же как и число переменных, подлежащих варьированию, в-третьих, большая доля субъективизма в выборе сценариев развития и назначении вероятностей их возникновения.

Если существует множество вариантов сценариев развития, но их вероятности не могут быть достоверно оценены, то для принятия научно обоснованного инвестиционного решения по выбору наиболее целесообразного инвестиционного проекта из совокупности альтернативных проектов в условиях неопределенности применяются методы теории игр, некоторые из которых рассмотрены ниже:

Критерий MAXIMAX не учитывает при принятии инвестиционного решения риска, связанного с неблагоприятным развитием внешней среды.

Критерий MAXIMIN (критерий Вальда) минимизирует риск инвестора, однако при его использовании многие инвестиционные проекты, являющиеся высокоэффективными, будут необоснованно отвергнуты. Этот метод искусственно занижает эффективность проекта, поэтому его использование целесообразно, когда речь идет о необходимости достижения гарантированного результата.

Критерий MINIMAX (критерий Сэвиджа), в отличие от критерия MAXIMIN, ориентирован не столько на минимизацию потерь, сколько на минимизацию сожалений по поводу упущенной прибыли. Он допускает разумный риск ради получения дополнительной прибыли. Пользоваться этим критерием для выбора стратегии поведения в ситуации неопределенности можно лишь тогда, когда есть уверенность в том, что случайный убыток не приведет фирму (инвестиционный проект) к полному краху.

Критерий пессимизма-оптимизма Гурвица устанавливает баланс между критерием MAXIMIN и критерием MAXIMAX посредством выпуклой линейной комбинации. При использовании этого метода из всего множества ожидаемых сценариев развития событий в инвестиционном процессе выбираются два, при которых инвестиционный проект достигает минимальной и максимальной эффективности.

Общий недостаток рассмотренных выше методов теории игр состоит в том, что предполагается ограниченное количество сценариев развития (конечное множество состояний окружающей среды).

Метод построения «дерева решений» сходен с методом сценариев и основан на построении многовариантного прогноза динамики внешней среды. В отличие от метода сценариев он предполагает возможность принятия самой организацией решений, изменяющих ход реализации инвестиционного проекта и использующих специальную графическую форму представления результатов («дерево решений»). Данный метод может применяться в ситуациях, когда более поздние решения сильно зависят от решений, принятых ранее, и в свою очередь, определяют сценарии дальнейшего развития событий. Основными недостатками данного метода при его практическом использовании являются, во-первых, техническая сложность данного метода при наличии больших размеров исследуемого «дерева» решений, так как затрудняется не только вычисление оптимального решения, но и определение данных, во-вторых, присутствует слишком высокий субъективизм при назначении оценок вероятностей.

Имитационное моделирование по методу Монте-Карло является наиболее сложным, но и наиболее мощным методом оценки и учета рисков при принятии инвестиционного решения. В связи с тем, что в процессе реализации этого метода происходит проигрывание достаточно большого количества вариантов, то его можно отнести к дальнейшему развитию метода сценариев. Метод Монте-Карло дает наиболее точные и обоснованные оценки вероятностей по сравнению с вышеописанными методами. Однако, несмотря на очевидную привлекательность и достоинства метода Монте-Карло с теоретической точки зрения, данный метод встречает серьезные препятствия в практическом применении, что обусловлено следующими основными причинами:

- высокая чувствительность получаемого результата по методу Монте-Карло к законам распределения вероятностей и видам зависимостей входных переменных инвестиционного проекта;

- несмотря на то, что современные программные средства позволяют учесть законы распределения вероятностей и корреляции десятков входных переменных, между тем оценить их достоверность в практическом исследовании обычно не представляется возможным, так как, в большинстве случаев, аналитики измеряют вариации основных переменных макро- и микросреды, подбирают законы распределения вероятностей и статистические связи между переменными субъективно, поскольку получение качественной статистической информации не представляется возможным по самым различным причинам (временным, финансовым и т. д.), особенно для уникальных инвестиционных проектов в реальном секторе экономики;

- вследствие двух вышеописанных причин, точность результирующих оценок, полученных по данному методу, в значительной степени зависит от качества исходных предположений и учета взаимосвязей входных переменных, что может привести к значимым ошибкам в полученных результатах, а, следовательно, к принятию ошибочного инвестиционного решения;

Таким образом, проведенный анализ традиционных методов оценки эффективности инвестиционных проектов в условиях риска и неопределенности свидетельствует об их теоретической значимости, но ограниченной практической применимости для анализа эффективности и риска инвестиционного проекта из-за большого числа упрощающих модельных предпосылок, искажающих реальную среду проекта.

 

4. Оценка уровня риска на основе теории нечетких множеств

Методы, базирующиеся на теории нечетких множеств, относятся к методам оценки и принятия решений в условиях неопределенности. Их использование предполагает формализацию исходных параметров и целевых показателей эффективности инвестиционного проекта (в основном, NPV) в виде вектора интервальных значений (нечеткого интервала), попадание в каждый интервал которого, характеризуется некоторой степенью неопределенности. Осуществляя арифметические и др. операции с такими нечеткими интервалами по правилам нечеткой математики, эксперты получают результирующий нечеткий интервал для целевого показателя. На основе исходной информации, опыта и интуиции эксперты часто могут достаточно уверенно количественно охарактеризовать границы (интервалы) возможных (допустимых) значений параметров и области их наиболее возможных (предпочтительных) значений.

Также к методам, базирующихся на теории нечетких множеств, можно, в качестве частного случая, отнести давно и широко известный интервальный метод. Данный метод соответствует ситуациям, когда достаточно точно известны лишь границы значений анализируемого параметра, в пределах которых он может изменяться, но при этом отсутствует какая-либо количественная или качественная информация о возможностях или вероятностях реализации различных его значений внутри заданного интервала. В соответствии с данным методом, входные переменные инвестиционного проекта задаются в виде интервалов, функции принадлежности которых, являются классическими характеристическими функциями множества, поэтому далее возможно прямое применение правил нечеткой математики для получения результирующего показателя эффективности инвестиционного проекта в интервальном виде. В интервальном методе за уровень (степень) риска предлагается принимать размер максимального ущерба, приходящегося на единицу неопределенности.

При наличии дополнительной информации о значениях параметра внутри интервала, когда, например, известно, что значение a более возможно, чем b, математическая формализация неопределенностей может быть адекватно реализована с помощью нечетко-интервального подхода.

Ниже перечислены основные преимущества нечетко-интервального подхода к оценке эффективности и риска инвестиционных проектов по сравнению с вышеперечисленными методами:

1. Данный подход позволяет формализовать в единой форме и использовать всю доступную неоднородную информацию (детерминированную, интервальную, статистическую, лингвистическую), что повышает достоверность и качество принимаемых стратегических решений;

2. В отличие от интервального метода, нечетко-интервальный метод аналогично методу Монте-Карло, формирует полный спектр возможных сценариев развития инвестиционного проекта, а не только нижнюю и верхнюю границы, таким образом, инвестиционное решение принимается не на основе двух оценок эффективности проекта, а по всей совокупности оценок.

3. Нечетко-интервальный метод позволяет получить ожидаемую эффективность инвестиционного проекта как в виде точечного значения, так и в виде множества интервальных значений со своим распределением возможностей, характеризующимся функцией принадлежности соответствующего нечеткого числа, что позволяет оценить интегральную меру возможности получения отрицательных результатов от проекта, т. е. степень риска проекта.

4. Нечетко-интервальный метод не требует абсолютно точного задания функций принадлежности, так как в отличие от вероятностных методов, результат, получаемый на основе нечетко-интервального метода, характеризуется низкой чувствительностью (высокой робастностью (устойчивостью)) к изменению вида функций принадлежности исходных нечетких чисел, что в реальных условиях низкого качества исходной информации делает применение данного метода более привлекательным;

5. Вычисление оценок показателей инвестиционного проекта на основе нечетко-интервального метода оказывается эффективным в ситуациях, когда исходная информация, основана на малых статистических выборках, т. е. в случаях, когда вероятностные оценки не могут быть получены, что всегда имеет место при предварительной оценке долгосрочных инвестиций и достаточно часто — при последующем перспективном анализе, проводимом при отсутствии достаточной информационной базы;

6. Реализация нечетко-интервального метода на основе интервальной арифметики, предоставляет широкие возможности для применения данного метода в инвестиционном анализе, что обусловлено фактически отсутствием конкурентоспособных подходов к созданию надежного (в смысле гарантированности) и транспортабельности (по включению) инструментального средства для решения численных задач.

Информация о работе Методы оценки рисков