Автор работы: Пользователь скрыл имя, 15 Марта 2012 в 16:36, творческая работа
С конца 40-х годов ученые все большего числа университетских и промышленных исследовательских лабораторий устремились к дерзкой цели: построение компьютеров, действующих таким образом, что по результатам работы их невозможно было бы отличить от человеческого разума.
Может ли машина мыслить? 4
История развития искусственного интеллекта за рубежом 6
История развития искусственного интеллекта в России 10
Нейрокибернетика 11
Кибернетика 12
Нейросети 17
Экспертные системы реального времени - основное направление искусственного интеллекта 19
Основные производители 20
Генетические алгоритмы 21
Модель бюджета РФ 23
Состояние и тенденции развития искусственного интеллекта 24
Успехи систем искусственного интеллекта и их причины 26
Начиная с середины 80-х гг. происходит коммерциализация искусственного интеллекта. Растут ежегодные капиталовложения, создаются промышленные экспертные системы. Растет интерес к самообучающимся системам.
В 1954 г. в МГУ под руководством профессора А.А.Ляпунова (1911 - 1973) начал свою работу семинар "Автоматы и мышление" . В этом семинаре принимали участие крупнейшие физиологи, лингвисты, психологи, математики. Принято считать, что именно в это время родился искусственный интеллект в России. Как и за рубежом, выделились направления нейрокибернетики и кибернетики "черного ящика".
Среди наиболее значимых результатов, полученных отечественными учеными, следует отметить алгоритм "Кора" М.Бонгарда, моделирующий деятельность человеческого мозга при распознавании образов (60-е гг.).
В 1945 - 1964 гг. создаются отдельные программы и исследуется поиск решения логических задач. В Ленинграде (ЛОМИ — Ленинградское отделение математического института им. В.А.Стеклова) создается программа, автоматически доказывающая теоремы (АЛПЕВ ЛОМИ). Она основана на оригинальном обратном выводе С.Ю.Маслова, аналогичном методу резолюций Робинсона.
В 1965-1980 гг. получает развитие новая наука— ситуационное управление (соответствует представлению знаний в западной терминологии). Основоположник этой научной школы — профессор Д.А.Поспелов. Разработаны специальные модели представления ситуаций — представления знаний.
В 1980- 1990 гг. проводятся активные исследования в области представления знаний, разрабатываются языки представления знаний, экспертные системы (более 300). В Московском государственном университете создается язык РЕФАЛ.
В 1988 г. создается АИИ — Ассоциация искусственного интеллекта. Ее членами являются более 300 исследователей. Президент Ассоциации — Д.А.Поспелов. Крупнейшие центры — в Москве, Петербурге, Переславле-Залесском, Новосибирске.
В рамках Ассоциации проводится большое количество исследований, собираются конференции, издается журнал. Уровень теоретических исследований по искусственному интеллекту в России ничуть не ниже мирового. К сожалению, начиная с 1975 г. на развитии этого направления сказалось прогрессирующее отставание в технологии. На данный момент отставание в области промышленных интеллектуальных систем составляет порядка 5-7 лет.
В итоге выделилось два направления: кибернетика и нейрокибернетика.
Основную идею нейрокибернетики можно сформулировать следующим образом. Единственный объект, способный мыслить, — это человеческий мозг. Поэтому любое "мыслящее" устройство должно каким-то образом воспроизводить его структуру.
Таким образом нейрокибернетика ориентирована на аппаратное моделирование структур, подобных структуре мозга. Физиологами давно установлено, что основой человеческого мозга является большое количество (до 1021) связанных между собой и взаимодействующих нервных клеток — нейронов. Поэтому усилия нейрокибернетики были сосредоточены на создании элементов, аналогичных нейронам, и их объединении в функционирующие системы. Эти системы принято называть нейронными сетями, или нейросетями.
Первые нейросети были созданы в конце 50-х гг. американскими учеными Г.Розен-блаттом и П.Мак-Каллоком. Это были попытки создать системы, моделирующие человеческий глаз и его взаимодействие с мозгом. Устройство, созданное ими, получило название перцептрона. Оно умело различать буквы алфавита, но было чувствительно к их написанию, например, буквы А, А и А для этого устройства были тремя разными знаками. Постепенно в 70-80 гг. количество работ по этому направлению искусственного интеллекта стало снижаться. Слишком неутешительны, оказались первые результаты. Авторы объясняли неудачи малой памятью и низким быстродействием существующих в то время компьютеров.
Однако в середине 80-х гг. в Японии в рамках проекта разработки компьютера V поколения, основанного на знаниях, был создан компьютер VI поколения, или нейрокомпьютер. К этому времени ограничения по памяти и быстродействию были практически сняты. Появились транспьютеры — параллельные компьютеры с большим количеством процессоров. От транспьютеров был один шаг до нейрокомпьютеров, моделирующих структуру мозга человека. Основная область применения нейрокомпьютеров — распознавание образов.
В настоящее время используются три подхода к созданию нейросетей:
• аппаратный — создание специальных компьютеров, плат расширения, наборов микросхем, реализующих все необходимые алгоритмы;
• программный — создание программ и инструментариев, рассчитанных на высокопроизводительные компьютеры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры;
• гибридный — комбинация первых двух. Часть вычислений выполняют специальные
платы расширения (сопроцессоры), часть — программные средства.
Первая искусственная
В начале XX века
Современная кибернетика началась в 1940-х как междисциплинарная область исследования, объединяющая системы управления, теории электрических цепей, машиностроение, логическое моделирование, эволюционную биологию, неврологию. Системы электронного управления берут начало с работы инженера Bell Labs Гарольда Блэка в 1927 году по использованию отрицательной обратной связи, для управления усилителями. Идеи также имеют отношения к биологической работе Людвига фон Берталанфи в общей теории систем.
Ранние применения отрицательной
обратной связи в электронных
схемах включали управление артиллерийскими
установками и радарными
Многочисленные работы появились в смежных областях. В 1935 году российский физиолог П.К.Анохин издал книгу, в которой было изучено понятие обратной связи («обратная афферентация»). Исследования продолжались, в особенности в области математического моделирования регулирующих процессов, и две ключевые статьи были опубликованы в 1943. Этими работами были «Поведение, цель и телеология» А.Розенблюта (англ.), Норберта Винера и Дж.Бигелоу (англ.); и работа «Логическое исчисление идей, относящихся к нервной активности» У.Мак-Каллока и У.Питтса (англ.).
Окончательно кибернетика как научная дисциплина была основана на работах Винера, Мак-Каллока и других, таких как У.Р.Эшби и У.Г.Уолтер (англ.).
Уолтер был одним из первых, кто построил автономные роботы в помощь исследованию поведения животных. Вместе с США и Великобританией, важным географическим местоположением ранней кибернетики была Франция.
Весной 1947 года Винер был приглашён на конгресс по гармоническому анализу, проведённому в Нанси, Франция. Мероприятие было организовано группой математиков Николя Бурбаки, где большую роль сыграл математик Ш.Мандельбройт.
Стюарт А.Амплеби
В 1970-х новая кибернетика
В экономике в рамках проекта Киберсин попытались ввести кибернетическую административно-командную экономику в Чили в начале 1970-х. Эксперимент был остановлен в результате путча 1973 года, оборудование было уничтожено.
В 1980-х, в отличие от её предшественницы, новая кибернетика интересуется взаимодействием автономных политических фигур и подгрупп, и практического и рефлексивного сознания предметов, создающих и воспроизводящих структуру политического сообщества. Основное мнение — рассмотрение рекурсивности, или самозависимости политических выступлений, как в отношении выражения политического сознания, так и путями, в которых системы создаются на основе себя.
Geyer и van der Zouwen в 1978 году обсуждали много особенностей появляющейся «новой кибернетики». Одна особенность новой кибернетики — то, что она рассматривает информацию как построенную и восстановленную человеком, взаимодействующим с окружающей средой. Это обеспечивает эпистемологическое основание науки, рассматривая это как зависимое от наблюдателя. Другая особенность новой кибернетики — свой вклад к соединению «микромакро-промежутка». Таким образом, это связывает человека с обществом. Гайер и ван дер Зоувен также отметили, что переход от классической кибернетики к новой кибернетике приводит к переходу от классических проблем к новым проблемам. Эти изменения в размышлении включают, среди других, изменения от акцента на управляемой системе, к управляющей, и фактору, который направляет управляющие решения. И новый акцент на коммуникации между несколькими системами, которые пытаются управлять друг другом.
Недавние усилия в истинном направлении кибернетики, системы контроля и поведения на стадии становления, а также в таких смежных областях, как теория игр (анализ группового взаимодействия), системы обратной связи в эволюции, и исследование метаматериалов (материалов со свойствами вне ньютоновых свойств их составляющих атомов), привели к возрождению интереса в этой всё более актуальной области.
Сфера кибернетики
Объектом кибернетики являются все управляемые системы. Системы, не поддающиеся управлению, в принципе, не являются объектами изучения кибернетики. Кибернетика вводит такие понятия, как кибернетический подход, кибернетическая система. Кибернетические системы рассматриваются абстрактно, вне зависимости от их материальной природы. Примеры кибернетических систем — автоматические регуляторы в технике, ЭВМ, человеческий мозг, биологические популяции, человеческое общество. Каждая такая система представляет собой множество взаимосвязанных объектов (элементов системы), способных воспринимать, запоминать и перерабатывать информацию, а также обмениваться ею. Кибернетика разрабатывает общие принципы создания систем управления и систем для автоматизации умственного труда. Основные технические средства для решения задач кибернетики — ЭВМ. Поэтому возникновение кибернетики как самостоятельной науки (Н. Винер, 1948) связано с созданием в 40-х гг. XX века этих машин, а развитие кибернетики в теоретических и практических аспектах — с прогрессом электронной вычислительной техники.
Кибернетика является междисциплинарной наукой. Она возникла на стыке математики, логики, семиотики, физиологии, биологии, социологии. Ей присущ анализ и выявление общих принципов и подходов в процессе научного познания. Наиболее весомыми теориями, объединяемыми кибернетикой, можно назвать следующие:
• Теория передачи сигналов
• Теория управления
• Теория автоматов
• Теория принятия решений
• Синергетика
• Теория алгоритмов
• Распознавание образов
• Теория оптимального управления
Кроме средств анализа, в кибернетике используются мощные инструменты для синтеза решений, предоставляемые аппаратами математического анализа, линейной алгебры, геометрии выпуклых множеств, теории вероятностей и математической статистики, а также более прикладными областями математики, такими как математическое программирование, эконометрика, информатика и прочие производные дисциплины.
Нейросети – это область ИИ, нашедшее наиболее широкое применение. Нейронная сеть представляет собой совокупность большого числа сравнительно простых элементов – нейронов. В основу искусственных нейронных сетей положены следующие черты живых нейронных сетей, позволяющие им хорошо справляться с интеллектуальными задачами: