Автор работы: Пользователь скрыл имя, 20 Июня 2013 в 14:34, реферат
Современное общество к концу ХХ века столкнулось с энергетическими проблемами, которые приводили известной степени даже к кризисам. Человечество старается найти новые источники энергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизна транспортировки, экологическая чистота, восполняемость. Уголь и газ отходят на второй план: их применяют только там, где невозможно использовать что-либо другое. Всё большее место в нашей жизни занимает атомная энергия: её можно использовать как в ядерных реакторах космических челноков, так и в легковом автомобиле.
Введение
Современное общество к концу ХХ века столкнулось с энергетическими проблемами, которые приводили известной степени даже к кризисам. Человечество старается найти новые источники энергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизна транспортировки, экологическая чистота, восполняемость. Уголь и газ отходят на второй план: их применяют только там, где невозможно использовать что-либо другое. Всё большее место в нашей жизни занимает атомная энергия: её можно использовать как в ядерных реакторах космических челноков, так и в легковом автомобиле.
Все традиционные источники энергии обязательно закончатся, особенно при постоянно возрастающих потребностях людей. Поэтому на рубеже XXI века человек стал задумываться о том, что станет основой его существования в новой эре. Есть и другие причины, в связи с которыми человечество обратилось к альтернативным источникам энергии. Во-первых, непрерывный рост промышленности, как основного потребителя всех видов энергии (при нынешней ситуации запасов угля хватит примерно на 270 лет, нефти на – 35 – 40 лет, газа – на 50 лет). Во-вторых, необходимость значительных финансовых затрат на разведку новых месторождений, так как часто эти работы связаны с организацией глубокого бурения (в частности, в морских условиях) и другими сложными и наукоемкими технологиями. И, в третьих, экологические проблемы, связанные с добычей энергетических ресурсов. Не менее важной причиной необходимости освоения альтернативных источников энергии является проблема глобального потепления. Суть ее заключается в том, что двуокись углерода (СО2), высвобождаемая при сжигании угля, нефти и бензина в процессе получения тепла, электроэнергии и обеспечения работы транспортных средств, поглощает тепловое излучение поверхности нашей планеты, нагретой Солнцем и создает так называемый парниковый эффект.
Ветроэлектрические станции (ВЭС)
Ветер один из самых доступных и возобновляемых источников энергии. В отличие от Солнца он может с его помощью зимой и летом, днем и ночью, на севере и на юге можно вырабатывать электроэнергию. Основные параметры ветра - скорость и направление - меняются подчас очень быстро и непредсказуемо, что делает этот вид энергоресурса очень ненадёжным. Таким образом, встают две проблемы, которые необходимо решить для полноценного использования энергии ветра. Во-первых, это возможность «собирать» кинетическую энергию ветра с максимальной площади. Во-вторых, еще важнее добиться равномерности, постоянства ветрового потока. Первую проблему можно легко решить, установив несколько ветроэлектрических установок.
Ветроэлектрическая станция − ветроэнергетическая установка, преобразующая кинетическую энергию ветрового потока в электрическую. Ветроэлектрическая станция состоит из ветродвигателя, генератора электрического тока, автоматических устройств управления работой ветродвигателя и генератора, сооружений для их установки и обслуживания. Ветродвигатель — двигатель, использующий кинетическую энергию ветра для выработки механической энергии. В качестве рабочего органа ветродвигателя, воспринимающего энергию ветрового потока и преобразующего её в механическую энергию вращения вала, является ротор, барабан с лопатками, ветроколесо. В зависимости от типа рабочего органа и положения его оси относительно потока различают ветродвигатели карусельные, барабанного типа и крыльчатые.
У карусельных ветродвигателей ось вращения рабочего органа вертикальна. Ветер давит на лопасти, расположенные по одну сторону оси, а лопасти по другую сторону оси прикрываются ширмой либо специальным приспособлением поворачиваются ребром к ветру. Так как лопасти движутся по направлению потока, то их окружная скорость не может превышать скорости ветра. Поэтому карусельные ветродвигатели относительно тихоходны, более громоздки и менее эффективны, чем крыльчатые. Коэффициент использования энергии ветра, оценивающий степень энергетического совершенства ветродвигателя и показывающий, какая доля энергии ветрового потока преобразуется в механическую энергию, у них не превышает 0,15. Такие же недостатки присущи ветродвигателю барабанного типа, у которого вал барабана расположен горизонтально и перпендикулярно направлению ветрового потока. Преимущественное распространение получили крыльчатые ветродвигатели, у которых ось ветроколеса горизонтальна и параллельна направлению потока. Они имеют наивысший коэффициент использования энергии ветра до 0,48 и более надёжны в эксплуатации. Так как лопасть с наконечником крепления к ступице называется крылом, то и ветродвигатели такого типа получил название крыльчатого. В зависимости от числа лопастей различают ветроколеса быстроходные: менее 4, средней быстроходности: от 4 до 8 и тихоходные: более 8 лопастей. Поэтому чем меньше лопастей тем выше угловая скорость.
В большинстве случаев ветроэлектрические станции пользуются как источником электроэнергии относительно небольшой мощности в местах, характеризующихся хорошим ветровым режимом и удалённых от сетей централизованного электроснабжения. Наиболее перспективно применение ветроэлектрических станций в сельском хозяйстве. Для получения высоких мощностей от ВЭС необходимо размещать несколько ветроэлектрических установок на большой площади. ВЭС малоймощности имеют генераторы постоянного или переменного тока и работают с батареями электрохимических аккумуляторов, которые не только запасают энергию на периоды безветрия, но и сглаживают пульсации напряжения. ВЭС средней и большой мощности вырабатывают переменный ток. При использовании ветра возникает серьезная проблема: избыток энергии в ветреную погоду и недостаток ее в периоды безветрия. При изолированной работе для улучшения качества энергии и её кратковременного аккумулирования ВЭС снабжают инерционными аккумуляторами и электрическими регуляторами напряжения.
Устройство ветроэлектрической установки
Основные компоненты установок обоих типов: ветроколесо (ротор), преобразующее энергию набегающего ветрового потока в механическую энергию вращения оси турбины. Диаметр ветроколеса колеблется от нескольких метров до нескольких десятков метров. Частота вращения составляет от 15 до 100 об/мин. Обычно для соединенных с сетью ВЭУ частота вращения ветроколеса постоянна. Для автономных систем с выпрямителем и инвертором - обычно переменная; мультипликатор - промежуточное звено между ветроколесом и электрогенератором, который повышает частоту вращения вала ветроколеса и обеспечивает согласование с оборотами генератора.
Исключение составляют ВЭУ малой мощности со специальными генераторами на постоянных магнитах; в таких ветроустановках мультипликаторы обычно не применяются; башня (ее иногда укрепляют стальными растяжками), на которой установлено ветроколесо. У ВЭУ большой мощности высота башни достигает 75 м. Обычно это цилиндрические мачты, хотя применяются и решетчатые башни;
основание (фундамент)
предназначено для
ВЭУ достигли сегодня
уровня коммерческой зрелости и в
местах с благоприятными скоростями
ветра могут конкурировать с
традиционными источниками
Целесообразность
ВЭУ
Установка ВЭУ оказывается целесообразной только в местах, где среднегодовые скорости ветра достаточно велики. КПД достигает для лучших ветровых колес примерно 0,45. Это означает, например, что ветровое колесо с длиной лопасти 10 м при скорости ветра 10 м/с может иметь мощность на валу в лучшем случае 85 кВт.
Наибольшее распространение из установок, подсоединяемых к сети, сегодня получили ветроэнергетические установки (ВЭУ) с единичной мощностью от 100 до 500 кВт. Удельная стоимость ВЭУ мощностью 500 кВт составляет сегодня около 1200 долл/кВт и имеет тенденцию к снижению. Расчетная скорость ветра для больших ВЭУ обычно принимается на уровне 11-15 м/с. Вообще, как правило, чем больше мощность агрегата, тем на большую скорость ветра он рассчитывается. Однако в связи с непостоянством скорости ветра большую часть времени ВЭУ вырабатывает меньшую мощность.
Считается, что если среднегодовая скорость ветра в данном месте не менее 5-7 м/с, а эквивалентное число часов в году, при котором вырабатывается номинальная мощность не менее 2000, то такое место благоприятно для установки крупной ВЭУ и даже ветровой фермы. Автономные установки киловаттного класса, предназначенные для энергоснабжения сравнительно мелких потребителей, могут применяться и в районах с меньшими среднегодовыми скоростями ветра.Сегодня в некоторых промышленно развитых странах установленная мощность ВЭУ достигает заметных значений. Так, в США установлено более 1,5 млн. кВт ВЭУ, в Дании ВЭУ производят около 3% потребляемой страной энергии; велика установленная мощность ВЭУ в Швеции, Нидерландах, Великобритании и Германии. По мере совершенствования оборудования ВЭУ и увеличения объема их выпуска стоимость ВЭУ, а значит, и стоимость производимой ими энергии снижаются. Если в 1981г. Стоимость электроэнергии производимой ВЭУ, составляла примерно 30 американских центов за кВт.ч, то сегодня она составляет 6-8 центов. В развивающихся странах интерес к ВЭУ связан в основном с автономными установками малой мощности, которые могут использоваться в деревнях, удаленных от систем централизованного электроснабжения.
Такие установки уже сегодня конкурентоспособны с дизелями, работающими
на привозимом топливе. Однако
в некоторых случаях
Типы ВЭУ
Типы ВЭУ могут быть соединены с сетью и передавать энергию в местную электросеть, или могут быть автономными, где потребитель находится в непосредственной близости от ветроагрегата.
Автономные системы энергоснабжения. Любая автономная система, в том числе и ветроэлектрическая, работает независимо от сети централизованного энергоснабжения. В этих условиях ВЭУ может функционировать самостоятельно, использоваться как дублер любого другого генератора или применяться в сочетании с другими энергетическими установками в качестве компонента комбинированной системы энергоснабжения. Такие системы используются для подъема воды или для электроснабжения домов, ферм или производственных помещений малых предприятий. Как правило, маломощные автономные ВЭУ генерируют постоянный ток для заряда АБ.
Система содержит инвертор для преобразования постоянного тока в переменный с напряжением 230 В. В настоящее время в России получили распространение такие ветроэнергетические установки мощностью до 0,5 кВт. Разработаны и используются опытные образцы ВЭУ мощностью 2,5; 5; 8 и 10 кВт. Более мощные системы, используемые, например, для электроснабжения нескольких объектов, обычно генерируют переменный ток.
Гибридная энергетическая система. Гибридная энергосистема подразумевает использование ВЭУ совместно с другими источниками энергии (дизель-генератор, солнечные модули, микроГЭС и т.п.). Эти источники энергии дополняют ВЭУ с целью обеспечения бесперебойного электроснабжения потребителя в безветренную погоду.
Ветро-дизельные системы.
Ветро-дизельная система
Гибридные ветро-дизельные системы мощностью от 2 до 500 кВт
различных конструкций и назначения в настоящее время испытываются,
разрабатываются или планируются к реализации в рамках Федеральной
программы "Энергоснабжение удаленных территорий Крайнего Севера РФ". Как правило, эти гибридные системы предназначены для надежного электроснабжения автономных потребителей с одновременной экономией жидкого топлива. Крупные гибридные электростанции должны работать на локальную сеть северных поселков. Использование современной ветро-дизельной системы, при должном внимании к проведению текущего обслуживания, может быть экономически очень эффективным при наличии достаточных ветровых ресурсов в местности, где установлен етроагрегат.