Автор работы: Пользователь скрыл имя, 26 Января 2012 в 14:22, курсовая работа
Актуальность темы данной курсовой работы обусловлена тем, что нефть была, есть и в обозримом будущем останется основным источником первичной энергии, потребление которой неуклонно расширяется в связи с дальнейшим развитием мировой экономики. Одновременно растет использование нефти и нефтепродуктов в качестве сырья для химической промышленности, что, как известно, экономически более оправданно и эффективно по сравнению с прямым энергетическим использованием углеводородов.
Введение 2
Глава 1. Механизмы ценообразования на мировом рынке нефти. 3
§1.Динамика мировых цен на нефть 3
§2. Биржевая торговля нефтью сегодня 7
§3. Факторы, влияющие на цену нефти. 11
Глава2 Методическое обоснование анализа ряда динамики. 15
§1Лаговые переменные и автокорреляция уровней 15
§2Автокорреляционная функция 16
§3Метод аналитического выравнивания 19
§4Изменения тенденции временного ряда 20
Глава3 Исследование динамики цен на нефть 23
§1 Анализ цен на нефть 23
§2 Прогноз цен на нефть 24
Заключение. 26
Для выявления трендовой, циклической компонент можно использовать коэффициент автокорреляции уровней ряда и автокорреляционную функцию. Автокорреляционная функция — это последовательность коэффициентов автокорреляции уровней первого, второго и последующих порядков. Соответственно график зависимости значений автокорреляционной функции от величины лага (порядка коэффициента автокорреляции) — коррелограмма. Анализ автокорреляционной функции и коррелограммы позволяет определить лаг, при котором автокорреляция наиболее высокая, а следовательно, и лаг, при котором связь между текущим и предыдущими уровнями ряда наиболее тесная.
Прежде чем пояснить это, отметим: коэффициент автокорреляции характеризует тесноту только линейной связи текущего и предыдущего уровней ряда. Если ряд имеет сильную нелинейную тенденцию, коэффициент автокорреляции может приближаться к нулю. Знак его не может служить указанием на наличие возрастающей или убывающей тенденции в уровнях ряда.
Теперь об анализе структуры временного ряда с помощью автокорреляционной функции и коррелограммы. Довольно ясно, что, если наиболее высоким оказался коэффициент автокорреляции первого порядка, то исследуемый ряд содержит основную тенденцию, или тренд, и, скорее всего, только ее. Если ситуация иная, когда наиболее высоким оказался коэффициент корреляции некоторого отличного от единицы порядка, то ряд содержит циклические компоненты (циклические колебания) с периодом моментов времени. Наконец, если ни один из коэффициентов корреляции не является значимым, то достаточно правдоподобны следующие две гипотезы. Либо ряд не содержит ни тренда, ни циклических компонентов, так что его структура носит флуктуационный (резко случайный) характер. Либо имеется сильная нелинейная тенденция, обнаружение которой требует дополнительных специальных исследований.
Автокорреляция связана с нарушением третьего условия Гаусса — Маркова, что значение случайного члена (случайного компонента, или остатка) в любом наблюдении определяется независимо от его значений во всех других наблюдениях. Для экономических моделей характерна постоянная направленность воздействия не включенных в уравнение регрессии переменных, являющихся наиболее частой причиной положительной автокорреляции. Случайный член в регрессионной зависимости подвергается воздействию переменных, влияющих на зависимую переменную, которые не включены в уравнение регрессии. Если значение случайного компонента в любом наблюдении должно быть независимым от его значения в предыдущем наблюдении, то и значение любой переменной, «скрытой» в случайном компоненте, должно быть некоррелированным с ее значением в предыдущем наблюдении.
Попытки вычисления коэффициентов корреляции различных порядков и тем самым формирования автокорреляционной функции являются, так сказать, непосредственным выявлением корреляционной зависимости, которое иногда приводит к вполне удовлетворительным результатам. Имеются специальные процедуры оценивания неизвестного параметра σ в выражении линейной зависимости, представляющем рекуррентное соотношение, связывающее значения случайных компонентов в текущем и предыдущем наблюдениях (коэффициент авторегрессии).
Тем не менее, необходимо иметь также и особые тесты на наличие или отсутствие корреляции по времени. В большинстве этих тестов используется такая идея: если имеется корреляция у случайных компонентов, то она присутствует также и в остатках, получаемых после применения к модели (уравнениям) обычного МНК. Как правило, все или почти все они связаны с проверкой двух статистических гипотез. Нулевая гипотеза — отсутствие корреляции σ = 0. Альтернативная гипотеза либо просто состоит в том, что несправедлива гипотеза нулевая, т.е. σ ≠ 0, либо так называемая односторонняя, более точная σ > 0. Несмотря на вид второй (альтернативной) гипотезы, соответствующее распределение (используемое в критерии) зависит не только от числа наблюдений и количества регрессоров (объясняющих переменных), но и от всей матрицы коэффициентов при неизвестных в уравнениях системы.
Понятно, что невозможно составить таблицу критических значений для всех матриц, так что приходится использовать обходные способы применения таких тестов. В тесте Дарбина — Уотсона используются для этого верхняя и нижняя (две) границы, которые уже зависят только от количества наблюдений, регрессоров и уровня значимости, таким образом, их уже можно «затабулировать» (составить для них таблицы). Правда, применение их (границ) далеко не всегда просто! Все ясно, когда соответствующая статистика (эмпирическое, или рассчитанное распределение) Дарбина — Уотсона меньше нижней границы, то отвергается нулевая гипотеза и принимается альтернативная гипотеза. Если же тест больше верхней границы, то принимается первая (нулевая) гипотеза. Но если тест попадает между этими границами, ситуация становится неопределенной: непонятно как выбрать одну из двух гипотез. К сожалению, ширина этой неопределенной зоны вполне может быть довольно пространной. Естественно, что поэтому пытались и небезуспешно построить тесты, сужающие такую зону неопределенности.
Вернемся теперь к проблеме выявления основной зависимости. Для этого существуют различные методы. Это могут быть качественные методы и качественный анализ исследуемых временных рядов, в т.ч. построение и визуальный анализ графика зависимости уровней ряда от времени. Это могут быть методы сопоставления двух параллельных рядов и методы укрупнения интервалов. Поскольку они носят достаточно качественный характер, суть их понятна из названия и к тому же они приводятся в курсах статистики, не будем останавливаться на них подробно.
Основным способом моделирования и изучения таким образом основной тенденции временного ряда (ряда динамики) является аналитическое выравнивание временного ряда. При этом строится аналитическая функция, характеризующая зависимость уровней ряда динамики от времени. Эта функция называется также трендом. Сам такой способ выявления основной тенденции называется аналитическим выравниванием. Ранее были описаны различные способы определения типа тренда. В целом построение модели тренда включает следующие основные этапы:
1) выравнивание исходного ряда методом скользящей средней;
2) расчет сезонной компоненты;
3)
устранение сезонной
4)
аналитическое выравнивание
5) расчет полученных по модели значений, генерируемых трендом и сезонной компонентой;
6) расчет абсолютных и относительных ошибок.
В качестве основной тенденции выдвигается гипотеза о некоторой аналитической функции, выражающей данную зависимость. Но ведь требуется еще определить коэффициенты (параметры) данной зависимости. Для определения (оценивания) параметров тренда используется обычный МНК. Критерием отбора наилучшей формы тренда является наибольшее значение скорректированного коэффициента детерминации.
Для устранения тренда применяют метод отклонений от тренда, в ходе которого вычисляются значения тренда для каждого ряда динамики модели и отклонения от тренда. Для последующего анализа уже применяют не исходные данные, а отклонения от тренда.
Другой способ устранения тренда — это метод последовательных разностей. Если тренд линейный, то исходные данные заменяются первыми разностями, которые в этом случае равны просто коэффициенту регрессии b, сложенному с разностью соответствующих случайных компонент. Если тренд параболический, то исходные данные заменяются вторыми разностями. В случае экспоненциального и степенного тренда метод последовательных разностей применяется к логарифмам исходных данных. Не следует упускать из виду и уже обсуждавшуюся выше автокорреляцию в остатках. Для выявления автокорреляции остатков используется критерий Дарбина — Уотсона.
Кроме сезонных и циклических колебаний весьма важную роль играют единовременные изменения характера тенденции временного ряда. Эти (относительно) быстрые однократные изменения тренда (его характера) вызываются структурными изменениями в экономике либо мощными глобальными (внешними) факторами. Прежде всего выясняется, значимо ли повлияли общие структурные изменения на характер тренда. При условии значимости такого влияния (структурных изменений) на характер тренда используется кусочно-линейная модель регрессии. Кусочно-линейная модель означает представление исходной совокупности данных ряда в виде двух частей. Одна часть данных моделируется просто линейной моделью с одним коэффициентом регрессии (углом наклона прямой) и представляет данные до момента (периода) структурных изменений. Вторая часть данных — это тоже линейная модель, но уже с иным коэффициентом регрессии (углом наклона).
После построения двух таких моделей (подмоделей) линейной регрессии получают уравнения двух соответствующих прямых. Если структурные изменения незначительно повлияли на характер тенденции ряда, то вместо построения точной кусочно-линейной модели вполне можно использовать единую аппроксимирующую модель, т.е. одну общую линейную зависимость (одну прямую), тоже вполне приемлемо представляющую данные в целом. Незначительное ухудшение в отдельных данных при этом непринципиально.
Если строится кусочно-линейная модель, то снижается остаточная сумма квадратов по сравнению с единым для всей совокупности уравнением тренда. В то же время разделение исходной совокупности на две части ведет к потере числа наблюдений и тем самым к снижению числа степеней свободы в каждом уравнении кусочно-линейной модели. Единое уравнение для всей совокупности данных позволяет сохранить число наблюдений исходной совокупности. Остаточная сумма квадратов по этому уравнению в то же время выше, чем такая же сумма для кусочно-линейной модели. Выбор конкретной — кусочно-линейной или просто линейной — модели, т.е. единого уравнения тренда, зависит от соотношения между снижением остаточной дисперсии и потерей числа степеней свободы при переходе от единого уравнения регрессии к кусочно-линейной модели.
Для оценки этого соотношения был предложен статистический тест Грегори — Чоу. В этом тесте рассчитываются параметры уравнений трендов, вводится гипотеза о структурной стабильности тенденции исследуемого ряда динамики. Ясно, что остаточную сумму квадратов кусочно-линейной модели можно найти как сумму соответствующих сумм квадратов для обеих линейных компонент модели. Сумма числа степеней свободы этих компонент дает число степеней свободы всей модели в целом. Тогда сокращение остаточной дисперсии при переходе от единого уравнения тренда к кусочно-линейной модели — это просто остаточная сумма квадратов, из которой вычтены соответствующие суммы для обеих компонент кусочно-линейной модели. Столь же просто определяется и соответствующее число степеней свободы.
После
этого рассчитывается фактическое
значение F-критерия по дисперсиям
на одну степень свободы. Это значение
сравнивают с табличным, полученным по
таблицам распределения Фишера для требуемого
уровня значимости и соответствующего
числа степеней свободы. Как всегда, если
расчетное (фактическое) значение больше
табличного (критического), то гипотеза
о структурной стабильности (незначимости
структурных изменений) отклоняется. Влияние
же структурных изменений на динамику
изучаемого показателя признается значимым.
Таким образом, следует моделировать тенденцию
ряда динамики с помощью кусочно-линейной
модели. Если же расчетное значение меньше
критического, то нельзя отклонять нуль-гипотезу
без риска сделать неверный вывод. В этом
случае следует использовать единое для
всей совокупности уравнение регрессии
как наиболее достоверное и минимизирующее
вероятность ошибки.
Для анализа цен на нефть будут использоваться данные из приложения 1
Оценку качества построенной модели определяет коэффициент (индекс) детерминации, а также средняя ошибка аппроксимации.
Коэффициент (индекс) детерминации R2:
Средняя ошибка аппроксимации - среднее отклонение расчетных значений от фактических:
Допустимый предел
значений
- не более 8-10%.
При проведение
анализа представленных цен на нефть
коэффициент детерминации равен 0,171,
и стандартная ошибка равна 1,58, что говорит
о том, что расчеты которые будут производиться,
будут являться статистически значимыми
В Microsoft Excel был построен график ряда динамики и тренда, наилучшим видом тренда был выбран полиноминальный.
Исходя из полученного графика можно сделать вывод о том, что периодической составляющий в данных не существует.
Для
прогноза цен на нефть будем использовать
средства Статистики
График
прогнозных цен на нефть