Термодинамикалық түсініктер мен анықтамалар

Автор работы: Пользователь скрыл имя, 04 Ноября 2012 в 08:36, реферат

Описание

Термодинамикалық түсініктер мен анықтамалар. Термодинамика денелер энергиясыньщ бір-біріне жылу мен жұмыс түрінде өзгеруін, айналуын зерттейді. Қоршаған ортадағы энергияның осылай алмасуы термодинамикада сандық сипаттама ретінде қарастырылады. Жылу, электрон, атом, молекула сияқты бөлшектердің ретсіз қозғалысын, яғни олардың кинетикалық энергиясының жылу түріндегі энергиямен алмасуын, ал жұмыс — сол бөлшектердің реттелген қозғалысын кинетикалық энергия түрінде сипаттайды.

Работа состоит из  1 файл

ТЕРМОДИНАМИКАНЫҢ БІРІНШІ ЗАҢЫ.docx

— 50.59 Кб (Скачать документ)

 

(СООН)2 (қ)+2 СН3ОН (с) = (СООСН3)2 (с)+2 Н2О (с)

 

Қатты күйдегі қымыздык қышқылы метил  спиртімен әрекеттесіп, эфир және су түзеді. Енді осы реакцияның жылу эффектісін есеп-теу керек. Ол үшін реакцияға қатысатын әрбір қосылыстың жану жылуын табамыз:

 

1. (СООН)2 (қ) +0,5 02 (г) = 2 СО (г) +Н2О (с) ; НІ = = —60,1 ккал;

 

2. 2СН3ОН (с)+ЗО2 (г)=2СО2 (г)+4Н2О (с) ; Н11 = = —347,3 ккал;

 

3. (СООСзНҺ (с)+3,502 (г)=2С02 (г)+ЗН2О (с); ДН111= —401,0 ккал. /

 

Гесс  заңына жүгінсек, ‘реакцияның жылу эффектісі:

 

Н=Н1+ Н11+Н111=-60,1 -347,3 + 401,0= -6,4 ккал

 

Идеал газдың ұлғаю жұмысы. Менделеев-Клапейрон теңдеуі-мен күйін өрнектеуге болатын газды идеал газ дейді. Ол ішкі энер-гиясы температураға тәуелді, қысым мен көлемге тәуелсіз газдар туралы тұжырымдалған Гей-Люссак-Джоуль заңына бағынады. Қысым мен көлем ішкі энергияға ешбір өзгеріс енгізбесе, онда жұмыс газдың ұлғаюы кезінде ғана жүреді. Оны бұл топтағы газдармен тығыз байланысы бар кейбір қүбылыстарға арнап, тер-модинамиканың бірінші заңымен ұштастырып, қолдануға болады.

 

Газ көлемі ұлғайғанда шамалы болса да жұмыс  істеледі. Жұ-мыстың мөлшері термодинамикалық процесті жүргізу түрі мен әдісіне, жағдайына, сондай-ақ газ көлемінің өзгерісіне байланыс-ты. Ал газ ауасыз, кедергісіз бос орынға ауысса ешбір жүмыссыз-ақ, бос орынды толтырады. Ендеше, газ ұлғаю кезінде жұмыс пай-да болу үшін міндетті түрде кедергіге кездесуі керек екен, яғни газ ұлғаю кезінде кездесетін кедергі көбейген сайын, мұның нәти-жесінде алынатын жұмыс та артады.

 

Гей-Люссак-Джоуль заңы тәжірибе негізінде тұжырымдалса да, оны теориялық тұрғыдан қарастырып, термодинамиканың екш-ші заңы арқылы дәлелдеуге болады. 1809 жылы Гей-Люссак және 1844 жылы Джоуль көптеген тәжірибе жүргізді. Олардың қысқа-ша мазмұны мынадай: Шүмегі бар түтік арқылы жалғасқан екі

 

30

 

баллон  су құйылған ыдыс ішіне орналасқан. Судың температура-сы термометрмен өлшенеді. Баллонның біреуініқ ішіндегі газдың қысымы р\, ал екіншісі бос, демек р2 = 0- Егер шүмекті ашсак. газ бос баллонға ауысады. Осы сәтте бірінші баллон салқындаса, екш-ші баллон жылынады. Ал газ қысьшы теңелген соң, судың темпе-ратурасы өзінің тәжірибеге дейінгі мәніне қайта келеді. Ендеше, екеуіндегі қысым да, көлем де бірдей, мұндайда ешбір жұмыс іс-телмейді, ягни олардьщ ішкі энергиясы да, жұмыс та нөлге тең. Бұл айтылғандардың бәрі термодинамиканың бірінші заңымен толық үндестік табады.

 

Енді  көлденең қимасының ауданы 5 болатын  цилиндр ішінде жүретін газдын қайтымды ұлғаюын қарастырайық (5-сурет). Мұн-дағы система қарсы жұмыс істейтін сыртқы қысымды р, поршень-нің шексіз кішкене биіктікке жылжуын dh арқылы белгілеп, пор-шеңь ешбір кедергісіз қозғалады дейік. Егер поршеньді қозғайтын күш қима ауданы мен қысым көбейтіндісіне тен, болса (p•$), осы күштін, атқарар жұмысы: А = рS(dһ, немесе Sdһ көлемнің өзгеруі-не ((IV) тең болғандықтан

 

(18)

 

және көлемнің V1-ден V2-ге дейін өзгергенін ескерсек:

 

 

 

18

 

 

 

(19)

 

Бұл теңдеуді шешу үшін қысымның көлемге тәуелділігін білу керек. Ол үшін изобаралық, изотермалық, адиабаталық және изо-хоралық процестердегі идеал газдардың жұмысын карастырайық.

 

Изобаралық  процесте (р = сопзt) системаның қысымы тұ-рақты, яғни ешбір өзгеріссіз болуы керек. Мүндай жағдайда соңғы (19) теңдеу мына төмендегідей өрнектеледі

 

А=p(V2—V1) (20)

 

 

 

6-сурет

 

31

 

яғни  изобаралық процестегі газдың ұлғаю жұмысы қысым мен көлем өзгерісінің көбейтіндісіне тең. Жұмыстың көлем өзгерісіне тәуелділігі 6-суретте көрсетілген және ол Ү1\ЕFҮ2 шектелген тік төртбұрыш ауданымен сипатталады. Бір моль газдың улғаюыв қарастырғанда, жалпы газ күйін өрнектейтін рҮ = RТКлапейрон-Менделеев теңдеуіндегі рҮ\ мен рУ2-ні сәйкес RТ1 және RT2мен ауыстырып жазсақ:

 

А=р(V2-V1)=pV2-pV1=R(T2-T1) (21)

 

Термодинамиканың  бірінші заңына сәйкес

 

(22)

 

Qp=Up+p(V2-V1) (23)

 

яғни  системаға берілген жылудың бәрі ішкі энергияны көбейтуге жұмсала бермейді екен, оның бір бөлігі ұлғайту жұмысына бөліне-ді. (23) теңдеуді басқаша да жазуға болады:

 

Qp=U2-U1+pU2-pU1=(U2+pU2)-(U1+pU1)

 

осы өрнекті  ықшамды ету үшін, энтальпия деп аталатын белгілі, жаңа термодинамикалық функцияны Н=U+pY пайдаланып, соңғы теңдеуді былай жазуға болады: Qp=H2-H1=H

 

яғни  изобаралық процестін, жылуы (Qp) энтальпиянын өзгеруіне тең.

 

Ал тұйықталған  процесте, системадағы ішкі энергиянын өзгеруі нөлге тең (U=0), қысым мен  көлем өзгерісінің көбейтіндісі де нөлге тең ((рY)=0) болғандықтан, ондағы энтальпияның да өзгеруі нөлге тең (Н=0). Тек система күйіне байланысты болып келетін алгебралық комбинация шамасы күй функциясы деп ата-лады, олай болса, қарастырылып отырған рҮ көбейтіндісі де күй функциясы екен.

 

Изотермалық процесте (Т = сопst) системаның температурасы  ешбір өзгеріссіз, тұрақты болып, оның көлемі мен қысымы өзгере-ді. Мұнда да тұрақты температура кезіндегі бір моль газдьщ ұл-ғаю жұмысы идеал газдардың теңдеуі Клапейрон — Менделеев теңдеуіне тікелей байланыста қарастырылады. Әрине,рҮ=RТ=>р=RТ/Ү оны (19) теңдеуге қойсақ, жұмыстьщ изотермалық процестегі мәнін аламыз:

 

(25)

 

Осы теңдеуге бағынатын изотермалық процесс  нәтижесінде алынатын жұмыс 6-суретте  ЕF’ кисығымен шектелген Ү1ЕFУ2 ауданымен өлшенеді: Клапейрон-Менделеев теңдеуінен изотермалық процесте R = сопst:, сондықтан RT=сопst;, олай болса қысым мен көлем бір-біріне кері пропорционал екені шығады:

 

32

 

 олай  болса А = RТIn (p1р2) (26)

 

Осы айтылғандарды  қысқаша қорытқанда, изотермалық  про-цестегі газдың ұлғаю жұмысы тек көлем мен қысымның кері про-порционалдық жағдайындағы өзгеруіне тәуелді  екен және ол жұ-мыс системаға сырттан енгізілген жылу есебінен жүреді. Демек, системаның температурасы неғұрльш төмен болса, жұмыс солғұр-лым аз.

 

Изохоралық  процесте (У=сопst) тек қысым мен  температура ғана өзгереді. Бірақ  газ күйін сипаттайтын тендеулерде  кездесетін көлем мен қысым көбейтіндісі(рҮ) тұрақты, өйткені процесс жағ-

 

дайына  байланысты көлем тұрақты. Ендеше,  және

 

ішкі  энергия өзгерісі ондағы жылуға тең,  яғни системаға сырттан берілген жылудың бәрі тек сyистеманың ішкі энергиясын арттыруға жұмсалады. Мұндағы жылу () ішкі энергия V v өлшемі және бұл процесте ешбір жұмыс жүргізілуі мүмкін емес.

 

Адиабаталық процестегі (Q = 0) газдың үлғаю жүмысы темпе-ратура мен қысым өзгерген кезде жүреді. Мұнда көлем тұрақты, өзгеріссіз қалады. Газ сырттан, өзге системадан ешбір жылу ал-мағандықтан (Q= 0), адиабаталық процестегі система жүмысы ондағы идеал газдың ішкі энергиясы есебінен жүргізіледі, ал газ-дың өзі салқындайды. Жоғарыда келтірген идеал газ күйін сипат-тайтын теңдеуден (рҮ = RТ) идеал газдың ішкі энергиясы тек тем-ператураға тәуелді екені көрінеді. Осыны негіз етіп алғанда, сис-темадағы ішкі энергиянын өзгерісі U тұрақты көлем кезіндегі жылу сыйымдылығын (Су) температура өзгерісіне (T) көбейт-кенге тең. Сондықтан да адиабаталық процестегі газдың ұлғаюы кезінде температура төмендеп, система салқындайды. Мұндағы жұмысты жылу сыйымдылығы мен температура өзгерісі арқылы өрнектесек:

 

А = СV(Т1-Т2) (27)

 

мұндағы Сү—тұрақты көлем кезіндегі газдың жылу сыйымдылы-ғы. Жылу сыйымдылығы (С)— заттың бірлік массасын 1 К-ге қыз-дыруға кеткен жылу мөлшері (өлшемі Дж/моль К)).Жылу сыйым-дылығы меншікті және молярлі деп бөлінеді.

 

Қыздыру не суыту жагдайына қарай жылу сыйымдылығы тұрақты көлемдегі (Су), тұрақты қысымдағы (Ср) деп қарастыры-лады.

 

Адиабаталық процесс 6-суреттегі ЕF» қисығымен  көрсетіліп, оның жұмысы Ү1EFY2 ауданымен анықталады. Ал, осы процестегі жұмысты термодинамиканың бірінші заңы түрғысынан алып қа-растырсақ, осы жұмыстың ішкі энергияның өзгеруі есебінен жү-ретіні байқалады. Мұндай процестегі жұмыс пен ішкі энергия өз-герісі өзара тең және олардың абсолюттік мәні кері (A=-U) Идеал газ үшін:

 

33

 

-nCvdT=pdV

 

мұндағы п — идеал газдың мольдік саны; дТ=Т1-Т2рдY=A Жылу сыйымдылығы денеге енген шексіз аз мөлшердегі жылудың осы жылу ену нәтижесінде пайда болатын өзгеріске қатынасымен анықталады. Изохоралық процестер үшін:

 

Cv=()v (29)

 

Және изобаралық процестер үшін

 

Cp=() (30)

 

Бұл теңдеудің  екеуін де барлық агрегаттық күй және барлық заттар үшін қолдануға болады.

 

Жылу  эффектісі және температура. Жылу эффектісі мен тем-пература бір-біріне өте жақын ұғымдар. Олардын арасындағы негізгі байланысты анықтап, жылу эффектісінін, температураға тәуелділігін көрсететін теңдеуді тұжырымдау үшін мына тендеу-лерді пайдаланамыз: Qv=U=U2-U2 Qp=H=H2-H1

 

Өрнектегі U1 және Н1 реагенттердің ішкі энергиясы мен энталь-пиясы, ал H2 және H2 өнімнің ішкі энергиясы мен энтальпиясы. Реакция кезіндегі системаның жылу эффектісінің температураға тәуелділігін анықтау үшін осы теңдеулерді температура бойынша дифференциалдау керек:

 

 

 

(31)

 

(29) мен  (30) теңдеулерде түрақты қысым  мен көлемдегі жылу сыйымдылығының  температураға тәуелділігі берілген. Сол сияқты этальпияның мәнін көрсететін (9) теңдеуде қысым тұрақты болса, онда рҮ де тұақты болады:

 

H=U+pVp-conct. Cp=

 

Системаның жылу сыйымдылығы, сол система құрамына енетін компоненттердің жылу сыйымдылықтарының қосындысына тең:

 

 

 

мұндағы n—і компонентіндегі моль саны; Сү — молярлі изохо-ралық жылу сыйымдылығы: Ср— молярлі изобаралық жылу сы-йымдылығы. Егер (31) теңдеуге (29), (30) және (33) теңдеулерде берілген мәндерді қойса, жоғарыда келтірілген пікірлерді қоры-тындылайтын теңдеу алынады:

 

 

 

Qv=

 

34

 

Мұнан әрі, (34) теңдеуді ТІ және Т^ температуралық интервалын-да интегралдасақ:

 

(Qv)T2-(Qv)T1=

 

 

 

Бұл Кирхгоф теңдеуі деп аталады, да, оның математикалық тұ-жырымдамасы Қирхгоф заңы делінеді: реакциялардық жылу эф-фектісінщ температуралыщ коэффициенті (сК^/сІТ) реакцияға түсе-тін заттардыц соқғы жэне әуелгі күйдегі жылу эффектілерініқ қосындыларыньщ айырмасына тец. Егер химиялык реакцияның ’1\ температурадағы жылу эффектілері ((2І/ және (^р) белгілі болса,

 

олардың Т2 температурадағы мәндерін табу үшін (35) теңдеудегі интегралдың оң жақтағы бөлігін интегралдан шығарады. Ал реак-ция теддеуіндегі химиялық қосылыстар алдында тұратын коэффи-циентті пайдаланып, мольдік шаманы көрсететін стехиметриялық коэффициентті (пг ) табуға болады. Олай болса, химиялық реак-циялардың жылу эффектілерінің температураға тәуелділігін табу дегеніміз белгілі интегралдарды таза математикалық тұрғыдан есептеп шығару екен.

 

Химиялық реакциялардың немесе термодинамикалық система-лардың жылу эффектілері температураға тәуелді бола бермейді. Ендеше температуралық интервал аса көп болмаса, яғни бірнеше ондаған градустан аспаса және ол өте бір дәлдікпен анықтауды керек етпесе, онда интеграл астында тұрған барлық жылу сыйым-дылықтарын тұрақты деуге болады. Ал, температуралық интервал біршама көп болып және едәуір дәлдік кажет болса, жылу сыйым-дылығының температураға тәуелділігін ескеру керек. Қирхгоф за-ңын мына төмендегі өрнекпен де көрсетуге болады:

 

(Qv)T2-(Qv)T2=

 

(Qp)T2-(Qp)T1 = (36)

 

Т2 — ТІ температуралык интервалында изохоралық жылу сыйым-дылығы Сү мен изобаралык. жылу сыйымдылығы Ср температу-раға тәуелсіз деп, осы өрнекті интегралдасақ:

 

(Qv)t2-(Qv)t1=() (37)

 

(Qp)t2-(Qp)t1=

 

Едәуір дәлдікпен есептеу кезінде барлық жылу сыйымдылық-тарының температураға тәуелділігін есептеу шұбалаңқы шығады, бірақ оның мәні қарапайым қалады. Жылу сыйымдылығының тем-ператураға тәуелділігі шамалы қатынаста қабылдайды:

 

35

 

C=ao +a1T+a2 T2 C=ao+a1 T +a-2 T-2 (38)

 

Бұл теңдеулердегі  а0, а\, а2 және а^коэффициенттері анықта-малықтарда берілген. Таблицада, әдетте коэффициенттердің мәні ғана келтіріледі. Егер ол мән Срүшін болса, онда (36) теңдеудегі екінші формуланы пайдаланамыз. Ал, ішкі энергия (Д£/) мәнін табу керек болса, онда қатты және сұйық заттар үшін Ср^Сүекенін, ал газдар үшін Сү = Ср—Қ екенін ескеру керек. Кейде жо-ғарғы теңдеуді (36) теңдеуге қойсақ, (38) теңдеуге қатынасты жылу сыйымдылықтарының бір бөлігі ауысып, кері де болуы мүм-кін. Сондықтан, а2Т2және а_2Г~2 сияқты белгілерді интеграл астьша енгізсек, (әр түрлі затқа қатынасы бар а2 немесе а _2коэффици-енттер нөлге тең:

 

(Qp)t2 –(Qp)t1 =+ (39)

 

Кирхгоф формуласы сұйық заттардың булану жылуының тем-ператураға байланысын көрсетіп, оны есептеуге мүмкіндік береді. Алайда кейбір қосымша шарттардың орындалуы талап етіледі. Мысалы, екі температура арасындағы жылу эффектісін есептеу ке-рек болсын. Т\ температурасының жылу эффектісі белгілі жағдай-да Т2 температурасының жылу эффектісін есептеп шығару үшш, осы Т2 температурадағы компоненттердін, қысымы әуелгі Т\ тем-пературадағы қысымға тең болуы керек. Температура өзгергенде қысым тұрақты болса, фазалық ауысу болмайды, бұл онын, химия-лық реакциядан өзгешелігін көрсетеді. Алайда, фазалық ауысу кезіндегі қысым мен температура өзара байланысты болғандық-тан, әрбір фазалық тепе-теңдік жағдайындағы жылу сыйымдылы-ғы Ср,сондай-ақ Сү шамаларынан өзгеше болады. Әйтсе де Қирх-гоф формуласы мұны да шамамен есептеуге жарайды.

 

Енді  термодинамика бірінші заңының биологиялық процестер-ді зерттеудегі маңызын қарастырайық. Термодинамиканың бірін-ші заңы табиғаттағы әмбебап заңдардың бірі, өйткені ол тірі ор-ганизмдер үшін де қолданылады. Тірі организмдегі әрбір процесс энергияның қатысуымен жүреді. Мысалы, салмағы 80 кг кісі ты-ныштык, жағдайында, яғни ешбір физикалық жұмыс істемегенде тәулігіне өзін қоршаған ортаға 1200 ккал шамасындағы жылу та-ратады екен. Организм дүрыс жұмыс атқару үшін онда зат алмасу процесі жүру керек. Бұған да энергия қажет.

 

Қез келген тағамның анық химиялық құрамын, дәл  формуласын көрсету мүмкін емес. Әйтсе  де, олардың организмде тотығуы нәтижесіндегі  жылу арқылы, яғни термодинамиканың бірінші за-

 

36

 

ңына  құрамдас болып енетін термохимия немесе Гесс заңын пай-даланып, әлгі тағамдардың  калориясын есептеуге, анықтауға бо-лады. Алайда, мұндай есептеулер организмде болатын құбылыс жайлы толық және нақтылы дерек бермейді, өйткені тағамдар организмде тотыққанда, кәдімгі химиялық реакция кезіндегідей толык жанып, көмір қышқыл газы, су және азот бере бермейді, Организмдегі тағам көбіне жартылай ыдырап, басқа күрделі орга-никалық қосылыстар түзеді.

Информация о работе Термодинамикалық түсініктер мен анықтамалар