Автор работы: Пользователь скрыл имя, 01 Декабря 2010 в 15:34, реферат
Чем сложнее и больше планируемая работа или проект, тем сложнее задачи оперативного планирования, контроля и управления. В этих условиях применение календарного графика не всегда может быть достаточно удовлетворительным, особенно для крупного и сложного объекта, поскольку не позволяет обоснованно и оперативно планировать, выбирать оптимальный вариант продолжительности выполнения работ, использовать резервы и корректировать график в ходе деятельности.
1.Сущность и назначение сетевого планирования и управления….2
2.Основные элементы сетевого планирования и управления….….4
3.Порядок и правила построения сетевых графиков……………....7
4.Временные параметры сетевых графиков……………………….10
5.Анализ и оптимизация сетевого графика………………………..14
Список литературы ……………………………………………..…………20
В этом случае рекомендуется ввести фиктивное событие и фиктивную работу, при этом одна из параллельных работ замыкается на это фиктивное событие. Фиктивные работы изображаются на графике пунктирными линиями.
Рисунок 2. Примеры введения фиктивных событий
Фиктивные
работы и события необходимо вводить
в ряде других случаев. Один из них
— отражение зависимости
Другой случай — неполная зависимость работ. Например работа С требует для своего начала завершения работ А и Б, на работа Д связана только с работой Б, а от работы А не зависит. Тогда требуется введение фиктивной работы Ф и фиктивного события 3’, как показано на рисунке 2, б.
Кроме того, фиктивные работы могут вводиться для отражения реальных отсрочек и ожидания. В отличие от предыдущих случаев здесь фиктивная работа характеризуется протяжённостью во времени.
Если
сеть имеет одну конечную цель, то программа
называется одноцелевой. Сетевой график,
имеющий несколько завершающих событий,
называется многоцелевым и расчет ведется
относительно каждой конечной цели. Примером
может быть строительство жилого микрорайона,
где ввод каждого дома является конечным
результатом, и в графике по возведению
каждого дома определяется свой критический
путь.
Одно из важнейших понятий сетевого графика — понятие пути. Путь — любая последовательность работ, в которой конечное событие каждой работы совпадает с начальным событием следующей за ней работы. Среди различных путей сетевого графика наибольший интерес представляет полный путь — любой путь, начало которого совпадает с исходным событием сети, а конец — с завершающим.
Наиболее продолжительный полный путь в сетевом графике называется критическим. Критическими называются также работы и события, находящиеся на этом пути.
На стадии управления и контроля над ходом выполнения программы основное внимание уделяется работам, находящимся на критическом пути или в силу отставания попавшим на критический путь. Для сокращения продолжительности проекта необходимо в первую очередь сокращать продолжительность работ, лежащих на критическом пути.
Ранний (или ожидаемый) срок свершения события определяется продолжительностью максимального пути, предшествующего этому событию.
Задержка свершения события по отношению к своему раннему сроку не отразится на сроке свершения завершающего события (а значит, и на сроке выполнения комплекса работ) то тех пор, пока сумма срока свершения этого события и продолжительности (длины) максимального из последующих за ним путей не превысит длины критического пути.
Поэтому поздний (или предельный) срок свершения события равен разности максимального времени наступления последующего за работой события и времени работы до этого (будущего) события.
Резерв времени события определяется как разность между поздним и ранним сроками его свершения.
Резерв времени события показывает, на какой допустимый период времени можно задержать наступление этого события, не вызывая при этом увеличения срока выполнения комплекса работ.
Критические события резервов времени не имею, так как любая задержка в свершении события, лежащего на критическом пути, вызовет такую же задержку в свершении завершающего события.
Из этого следует, что для того, чтобы определить длину и топологию критического пути, вовсе не обязательно перебирать все полные пути сетевого графика и определять их длины. Определив ранний срок наступления завершающего события сети, мы тем самым определяем длину критического пути, а, выявив события с нулевыми резервами времени, определяем его топологию.
Если сетевой график имеет единственный критический путь, то этот путь проходит через все критические события, то есть события с нулевыми резервами времени. Если критических путей несколько, то выявление их с помощью критических событий может быть затруднено, так как через часть критических событий могут проходить как критические, так и некритические пути. В этом случае для определения критических путей рекомендуется использовать критические работы.
Отдельная работа может начаться (и окончиться) в ранние, поздние или другие промежуточные сроки. В дальнейшем при оптимизации графика возможно любое размещение работы в заданном интервале, называемом продолжительностью работы.
Очевидно, что ранний срок начала работы совпадает с ранним сроком наступления предшествующего события.
Ранний срок окончания работы совпадает с ранним сроком свершения последующего события.
Поздний срок начала работы совпадает с поздним сроком наступления предшествующего события.
Поздний срок окончания работы совпадает с поздним сроком наступления последующего события.
Таким образом, в рамках сетевой модели моменты начала и окончания работы тесно связаны с соседними событиями соответствующими ограничениями.
Если путь не критический, то он имеет резерв времени, определяемый как разность между длиной критического пути и рассматриваемого. Он показывает, на сколько в сумме могут быть увеличены продолжительности всех работ, принадлежащих этому пути. Отсюда можно сделать вывод, что любая из работ пути на его участке, не совпадающем с критическим путём (замкнутым между двумя событиями критического пути), обладает резервом времени.
Среди резервов времени работ выделяют четыре разновидности.
Полный резерв времени работы показывает, на сколько можно увеличить время выполнения данной работы при условии, что срок выполнения комплекса работ не изменится.
Полный резерв времени работы равен резерву максимального из путей, проходящего через данную работу. Этим резервом можно располагать при выполнении данной работы, если её начальное событие свершится в самый ранний срок, и можно допустить свершение конечного события в его самый поздний срок.
Важным
свойством полного резерва
Остальные резервы времени работы являются частями её полного резерва.
Частный резерв времени первого вида есть часть полного резерва времени, на которую можно увеличить продолжительность работы, не изменив при этом позднего срока её начального события. Этим резервом можно располагать при выполнении данной работы в предположении, что её начальное и конечное события свершаются в свои самые поздние сроки.
Частный резерв времени второго вида, или свободный резерв времени работы представляет часть полного резерва времени, на которую можно увеличить продолжительность работы, не изменив при этом раннего срока её конечного события. Этим резервом можно располагать при выполнении данной работы в предположении, что её начальное и конечное события свершатся в свои самые ранние сроки.
Свободным резервом времени можно пользоваться для предотвращения случайностей, которые могут возникнуть в ходе выполнения работ. Если планировать выполнение работ по ранним срокам их начала и окончания, то всегда будет возможность при необходимости перейти на поздние сроки начала и окончания работ.
Независимый резерв времени работы — часть полного резерва времени, получаемая для случая, когда все предшествующие работы заканчиваются в поздние сроки, а все последующие работы начинаются в ранние сроки.
Использование независимого резерва времени не влияет на величину резервов времени других работ. Независимые резервы стремятся использовать тогда, когда окончание предыдущей работы произошло в поздний допустимый срок, а последующие работы хотят выполнить в ранние сроки. Если величина независимого резерва равна нулю или положительна, то такая возможность есть. Если же эта величина отрицательна, то этой возможности нет, так как предыдущая работа ещё не оканчивается, а последующая уже должна начаться. То есть отрицательное значение этой величины не имеет реального смысла. Фактически независимый резерв имеют лишь те работы, которые не лежат на максимальных путях, проходящих через их начальные и конечные события.
Таким образом, если частный резерв времени первого вида может быть использован на увеличение продолжительности данной и последующих работ без затрат резерва времени предшествующих работ, а свободный резерв времена — на увеличение продолжительности данной и предшествующих работ без нарушения резерва времени последующих работ без нарушения резерва времени последующих работ, то независимый резерв времени может быть использован для увеличения продолжительности только данной работы.
Работы, лежащие на критическим пути, так же как и критические события, резервов времени не имеют.
После нахождения критического пути и резервов времени работ и оценки вероятности выполнения проекта в заданный срок должен быть проведён всесторонний анализ сетевого графика и приняты меры по его оптимизации. Этот весьма важный этап в разработке сетевых графиков раскрывает основную идею СПУ. Он заключается в приведении сетевого графика в соответствие с заданными сроками и возможностями организации, разрабатывающей проект.
Оптимизация сетевого графика в зависимости от полноты решаемых задач может быть условно разделена на частную и комплексную. Видами частной оптимизации сетевого графика являются: минимизация времени выполнения комплекса работ при заданной его стоимости; минимизация стоимости комплекса работ при заданном времени выполнения проекта. Комплексная оптимизация представляет собой нахождение оптимального соотношения величин стоимости и сроков выполнения проекта в зависимости от конкретных целей, ставящихся при его реализации.
Вначале рассмотрим анализ и оптимизацию календарных сетей, в которых заданы только оценки продолжительности работ.
Анализ сетевого графика начинается с анализа топологии сети, включающего контроль построения сетевого графика, установление целесообразности выбора работ, степени их расчленения.
Затем проводятся классификация и группировка работ по величинам резервов. Следует отметить, что величина полного резерва времени далеко не всегда может достаточно точно характеризовать, насколько напряжённым является выполнение той или иной работы некритического пути. Всё зависит от того, на какую последовательность работ распространяется вычисленный резерв, какова продолжительность этой последовательности.
Определить степень трудности выполнения в срок каждой группы работ некритического пути можно с помощью коэффициента напряжённости работ.
Коэффициентом напряжённости работы называется отношение продолжительности несовпадающих, но заключённых между одними и теми же событиями, отрезков пути, одним из которых является путь максимальной продолжительности, проходящий через данную работу, а другим — критический путь.
Информация о работе Основные параметры сетевого планирования