Физиология спорта

Автор работы: Пользователь скрыл имя, 31 Марта 2012 в 16:39, контрольная работа

Описание

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий:
1. активации всех двигательных единиц (мышечных волокон) данной мышцы;
2. режиме полного тетануса у всех ее двигательных единиц;
3. сокращении мышцы при длине покоя.

Содержание

№ 1 Максимальная произвольная сила и механизмы ее повышения в процессе тренировки. Дефицит силы и его изменения под влиянием тренировки.
№ 21 Кислородный запрос в упражнениях различной мощности. Кислородный долг и его фракции.
№ 56 Принципы дозировки физических нагрузок, используемых для повышения функциональных резервов лиц разного пола, возраста и физической подготовленности, занимающихся физической культурой.
- Список использованной литературы.

Работа состоит из  1 файл

контрольная по физиологии спорта.doc

— 630.00 Кб (Скачать документ)


6

 

Содержание.

Вариант №17

 

 

№ п/п

     №

вопроса

                                     Вопрос

№ страницы

1.

№ 1

Максимальная произвольная сила и механизмы ее повышения в процессе тренировки. Дефицит силы и его изменения под влиянием тренировки.

Стр. 2

2.

№ 21

Кислородный запрос в упражнениях различной мощности. Кислородный долг и его фракции.

 

Стр. 9

3.

№ 56

Принципы дозировки физических нагрузок, используемых для повышения функциональных резервов лиц разного пола, возраста и физической подготовленности, занимающихся физической культурой.

 

Стр. 22

4.

      -

Список использованной литературы.

Стр.  26

 

 

 

 

 

 

 

 

 

1.  Максимальная произвольная сила и механизмы ее повышения в процессе тренировки. Дефицит силы и его изменения под влиянием тренировки.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение при одновременном выполнении следующих трех условий: 

1.  активации всех двигательных единиц (мышечных волокон) данной     мышцы; 

2.  режиме полного тетануса у всех ее двигательных единиц; 

3.  сокращении мышцы при длине покоя.

В этом случае изометрическое напряжение мышцы соответствует ее максимальной статической силе. 

Максимальная сила (МС), развиваемая мышцей, зависит от числа мышечных волокон, составляющих данную мышцу, и от их толщины. Число и толщина волокон определяют толщину мышцы в целом, или, иначе, площадь поперечного сечения мышцы (анатомический поперечник). Отношение МС мышцы к ее анатомическому поперечнику называется относительной силой мышцы. Она измеряется в ньютонах или килограммах силы на 1 см2 (Н/см2 или кг/см2). 

Анатомический поперечник определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно к ее длине. Поперечный разрез мышцы, проведенный перпендикулярно к ходу ее волокон, позволяет получить физиологический поперечник мышцы. Для мышц с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. Отношение МС мышцы к ее физиологическому поперечнику называется абсолютной силой мышцы. Она колеблется в пределах 0,5-1 Н/см2. 

Измерение мышечной силы у человека осуществляется при его. произвольном усилии, стремлении максимально сократить необходимые мышцы. Поэтому когда говорят о мышечной силе у человека, речь идет о максимальной произвольной силе (МПС, в спортивной педагогике этому понятию эквивалентно понятие "абсолютная сила мышц"). Она зависит от двух групп факторов: мышечных (периферических) и координационных (центрально-нервных). 

К мышечным (периферическим) факторам, определяющим МПС, относятся: 

1.  механические условия действия мышечной тяги - плечо рычага действия мышечной силы и угол приложения этой силы к костным рычагам; 

2.  длина мышц, так как напряжение мышцы зависит от ее длины; 

3.  поперечник (толщина) активируемых мышц, так как при прочих равных условиях проявляемая мышечная сила тем больше, чем больше суммарный поперечник произвольно сокращающихся мышц; 

4.  композиция мышц, т. е. соотношение быстрых и медленных мышечных волокон в. сокращающихся мышцах.

К координационным (центрально-нервным) факторам относится совокупность центрально-нервных координационных механизмов управления мышечным аппаратом - механизмы внутримышечной координации и механизмы межмышечной координации. 

Механизмы внутримышечной координации определяют число и частоту импульсации мотонейронов данной мышцы и связь их импульсации во времени. С помощью этих механизмов центральная нервная система регулирует МПС данной мышцы, т. е. определяет, насколько сила произвольного сокращения данной мышцы близка к ее МС. Показатель МПС любой мышечной группы даже одного сустава зависит от силы сокращения многих мышц. Совершенство межмышечной координации проявляется в адекватном выборе "нужных" мышц-синергистов, в ограничении "ненужной" активности мышц-антагонистов данного и других суставов и в усилении активности мышц-антагонистов, обеспечивающих фиксацию смежных суставов и т. п. 

Таким образом, управление мышцами, когда требуется проявить их МПС, является сложной задачей для центральной нервной системы. Отсюда понятно, почему в обычных условиях МПС мышц меньше, чем их МС. Разница между МС мышц и их МПС называется силовым дефицитом. 

Силовой дефицит у человека определяется следующим образом. На специальной динамометрической установке измеряют МПС выбранной группы мышц, затем - ее МС. Чтобы измерить МС, раздражают нерв, иннервирующий данную мышечную группу, электрическими импульсами. Силу электрического раздражения подбирают такой, чтобы возбудить все моторные нервные волокна (аксоны мотонейронов). При этом применяют частоту раздражения, достаточную для возникновения полного тетануса мышечных волокон (обычно 50-100 имп/с). Таким образом, сокращаются все мышечные волокна данной мышечной группы, развивая максимально возможное для них напряжение (МС). 

Силовой дефицит данной мышечной группы тем меньше, чем совершеннее центральное управление мышечным аппаратом. Величина силового дефицита зависит от трех факторов: 

1.  психологического, эмоционального, состояния (установки) испытуемого; 

2.  необходимого числа одновременно активируемых мышечных групп; 

3.  степени совершенства произвольного управления ими.

Первый фактор. Известно, что при некоторых эмоциональных состояниях человек может проявлять такую силу, которая намного превышает его максимальные возможности в обычных условиях. К таким эмоциональным (стрессовым) состояниям относится, в частности, состояние спортсмена во время соревнования. В экспериментальных условиях значительное повышение показателей МПС (т. е. уменьшение силового дефицита) обнаруживается при сильной мотивации (заинтересованности) испытуемого, в ситуациях, вызывающих его сильную эмоциональную реакцию, например после неожиданного резкого звука (выстрела).

То же отмечается при гипнозе, приеме некоторых лекарственных препаратов. При этом положительный эффект (увеличение МПС, уменьшение силового дефицита) сильнее выражен у нетренированных испытуемых и слабее (или совсем отсутствует) у хорошо тренированных спортсменов. Это указывает на высокую степень совершенства центрального управления мышечным аппаратом у спортсменов. 

Второй фактор. При одинаковых условиях измерения величина силового дефицита тем больше, чем больше число одновременно сокращающихся мышечных групп. Например, когда измеряется МПС мышц, только приводящих большой палец кисти, силовой дефицит составляет у разных испытуемых 5-15% от МС этих мышц. При определении МПС мышц, приводящих большой палец и сгибающих его концевую фалангу, силовой дефицит возрастает до 20%. При максимальном произвольном сокращении больших групп мышц голени силовой дефицит равен 30% (Я. М. Коц). 

Третий фактор. Роль его доказывается различными экспериментами. Показано, например, что изометрическая тренировка, проводимая при определенном положении конечности, приводит к значительному повышению МПС, измеряемой в том же положении. Если измерения проводятся в других положениях конечности, то прирост МПС оказывается незначительным или отсутствует совсем. Если бы прирост МПС зависел только от увеличения поперечника тренируемых мышц (периферического фактора), то он обнаруживался бы при. измерениях в любом положении конечности.         



6

 

Следовательно, в данном случае прирост МПС зависит от более совершенного, чем до тренировки, центрального управления мышечным аппаратом именно в тренируемом положении. 

Роль координационного фактора выявляется также при изучении показателя относительной произвольной силы, которая определяется делением показателя МПС на величину мышечного поперечника (Так как у человека можно измерить только анатомический поперечник мышцы, для большинства мышц определяется не абсолютная произвольная сила (отношение МПС к физиологическому поперечнику), а относительная (отношение МПС к анатомическому поперечнику). В спортивной педагогике понятием "относительная сила" обозначают отношение МПС к весу спортсмена.). Так, после 100-дневной тренировки с применением изометрических упражнений МПС мышц тренируемой руки выросла на 92%, а площадь их поперечного сечения на 23% (рис. 1)

Рис.1. Влияние 100-дневной силовой тренировки мышц правой руки на максимальную произвольную силу (МПС), площадь поперечного сечения (ППС) и отношение МПС/ППС мышц правой и левой рук (М. Икай и Т. Фукунага, 1970):

1- тренированные мышцы,

2 – нетренированные.



6

 

          Соответственно относительная произвольная сила увеличилась в среднем с 6,3 до 10 кг/см2. Следовательно, систематическая тренировка может способствовать совершенствованию произвольного управления мышцами. МПС мышц нетренируемой руки также несколько увеличилась за счет последнего фактора, так как площадь поперечного сечения мышц этой руки не изменилась. Это показывает, что более совершенное центральное управление мышцами может проявляться в отношении симметричных мышечных групп (явление "переноса" тренировочного эффекта). 

Как известно, наиболее высокопороговыми ("менее возбудимыми") являются быстрые двигательные единицы мышцы. Их вклад в общее напряжение мышцы особенно велик, так как каждая из них содержит много мышечных волокон. Быстрые мышечные волокна толще, имеют больше миофибрилл, и поэтому сила их сокращения выше, чем у медленных двигательных единиц. Отсюда понятно, почему МПС зависит от композиции

мышц: чем больше быстрых мышечных волокон они содержат, тем выше их МПС (рис. 2).

                         Рис. 2. Процентное распределение быстрых волокон в наружной головке четырехглавой м. бедра (слева); изометрическая сила мышц ног, отнесенная к весу тела (светлые прямоугольники), и вертикальная скорость при прыжке вверх (темные прямоугольники) у спортсменов разных специализаций и неспортсменов (П. Коми и др., 1978)

Когда перед спортсменом стоит задача развить значительную мышечную силу во время выполнения соревновательного упражнения, он должен систематически применять на тренировках упражнения, которые требуют проявления большой мышечной силы (не менее 70% от его МПС). В этом случае совершенствуется произвольное управление мышцами, и в частности механизмы внутримышечной координации, обеспечивающие включение как можно большего числа двигательных единиц основных мышц, в том числе наиболее высокопороговых, быстрых двигательных единиц. 

Связь произвольной силы и выносливости.

Между показателями произвольной силы и выносливости мышц ("локальной" выносливости) существует сложная связь. МПС и статическая выносливость одной и той же мышечной группы связаны прямой зависимостью: чем больше МПС данной мышечной группы, тем длительнее можно удержать выбранное усилие (больше "абсолютная локальная выносливость"). Иная связь между произвольной силой и выносливостью обнаруживается в экспериментах, в которых разные испытуемые развивают одинаковые относительные мышечные усилия, например 60% от их МПС (при этом чем сильнее испытуемый, тем большее по абсолютной величине мышечное усилие он должен поддерживать). В этих случаях среднее предельное время работы ("относительная локальная выносливость") чаще всего одинаково у людей с разной МПС. 

Информация о работе Физиология спорта