Автор работы: Пользователь скрыл имя, 27 Июня 2011 в 08:51, реферат
В основе оценки физического развития лежат параметры роста, массы тела, пропорции развития отдельных частей тела, а также степень развития функциональных способностей его организма (жизненная емкость легких, мышечная сила кистей рук и др; развитие мускулатуры и мышечный тонус, состояние осанки, опорно-двигательного аппарата, развитие подкожного жирового слоя, тургор тканей), которые зависят от дифференцировки и зрелости клеточных элементов органов и тканей, функциональных способностей нервной системы и эндокринного аппарата.
Введение
Опорно-двигательная система
Нервная система
Дыхательная система
Пищеварительная система
Список использованной литературы
Скелетные мышцы образованы поперечнополосатой мышечной тканью, мышечные волокна которой собраны в пучки. Внутри волокон проходят белковые нити, благодаря которым мышцы способны укорачиваться - сокращаться.
Сердечная мышца, как и скелетная, состоит из поперечнополосатых мышечных волокон. Эти волокна в определенных участках как бы сливаются (переплетаются). Благодаря этой особенности сердечная мышца способна быстро сокращаться.
Стенки внутренних органов (сосудов, кишечника, мочевого пузыря) образованы гладкой мышечной тканью. Сокращение волокон этой ткани происходит медленно.
Строение мышцы. Скелетные мышцы состоят из пучков по перечнополосатых мышечных волокон. К каждой мышце подходят кровеносные сосуды и нервы. Мышцы покрыты соединительнотканной оболочкой и прикрепляются к кости при помощи сухожилий.
Роль нервной системы в регуляции деятельности мышц. К скелетным мышцам подходят нервы, содержащие чувствительные и двигательные нейроны. По чувствительным нейронам передаются импульсы от рецепторов кожи, мышц, сухожилий, суставов в центральную нервную систему.
По двигательным нейронам проводятся импульсы от спинного мозга к мышце, в результате чего мышца сокращается. Таким образом, сокращения мышц в организме совершаются рефлекторно. В то же время на двигательные нейроны спинного мозга влияют импульсы из головного мозга, в частности из коры больших полушарий. Это делает движения произвольными. Сокращаясь, мышцы приводят в движение части тела, обусловливают перемещение организма или поддержание определенной позы.
Работа мышц
Согласованная работа мышц сгибателей и разгибателей. В выполнении человеком любого движения принимают участие две группы противоположно действующих мышц: сгибатели и разгибатели суставов.
Сгибание в суставе осуществляется при сокращении мышц-сгибателей и одновременном расслаблении мышц-разгибателей.
Согласованная деятельность мышц-сгибателей и мышц-разгибателей возможна благодаря чередованию процессов возбуждения и торможения в спинном мозге. Например, сокращение мышц-сгибателей руки вызвано возбуждением двигательных нейронов спинного мозга. Одновременно расслабляются мышцы-разгибатели. Это связано с торможением двигательных нейронов.
Мышцы-сгибатели и разгибатели сустава могут одновременно находиться в расслабленном состоянии. Так, мышцы свободно висящей вдоль тела руки находятся в состоянии расслабления. При удержании гири или гантели в горизонтально вытянутой руке наблюдается одновременное сокращение мышц-сгибателей и разгибателей сустава.
Работа мышц. Сокращаясь, мышца действует на кость как на рычаг и производит механическую работу. Любое мышечное сокращение связано с расходом энергии. Источниками этой энергии служат распад и окисление органических веществ (углеводов, жиров, нуклеиновых кислот). Органические вещества в мышечных волокнах подвергаются химическим превращениям, в которых участвует кислород. В результате образуются продукты расщепления, главным образом углекислый газ и вода, и освобождается энергия.
Протекающая через мышцы кровь постоянно снабжает их питательными веществами и кислородом и уносит из них углекислый газ и другие продукты распада.
Утомление при мышечной работе. При длительной физической работе без отдыха постепенно уменьшается работоспособность мышц. Временное снижение работоспособности, наступающее по мере выполнения работы, называют утомлением. После отдыха работоспособность мышц восстанавливается.
При выполнении ритмических физических упражнений утомление наступает позднее, так как в промежутках между сокращениями работоспособность мышц частично восстанавливается.
В то же время при большом ритме сокращений скорее развивается утомление. Работоспособность мышц зависит и от величины нагрузки: чем больше нагрузка, тем скорее развивается утомление.
Утомление мышц и влияние на их работоспособность ритма сокращений и величины нагрузки изучал русский физиолог И.М. Сеченов. Он выяснил, что при выполнении физической работы очень важно подобрать средние величины ритма и нагрузки. При этом производительность будет высокой, а утомление наступает позже.
Распространено
мнение, что лучший способ восстановления
работоспособности - это полный покой.
И.М. Сеченов доказал ошибочность
такого представления. Он сравнивал, как
восстанавливается работоспособность
в условиях полного пассивного отдыха
и при смене одного вида деятельности
другим, т.е. в условиях активного отдыха.
Оказалось, что утомление проходит скорее
и работоспособность восстанавливается
раньше при активном отдыхе.
Нервная система
Нервная система регулирует деятельность всех органов и систем, обусловливая их функциональное единство, и обеспечивает связь организма как целого с внешней средой
Структурной единицей нервной системы является нервная клетка с отростками - нейрон. Bся нервная система представляет собой совокупность нейронов, которые контактируют друг с другом при помощи специальных аппаратов - синапсов. По структуре и функции различают три типа нейронов:
Нервная система условно подразделяется на два больших отдела -соматическую, или анимальную, нервную систему и вегетативную, или автономную, нервную систему. Соматическая нервная система осуществляет преимущественно функции связи организма с внешней средой, обеспечивая чувствительность и движение вызывая сокращение скелетной мускулатуры. Так как функции движения и чувствования свойственны животным и отличают их от растений, эта часть нервной системы получила название анимальной (животной).
Вегетативная
нервная система оказывает
В нервной
системе выделяют центральную
Серое вещество образуется скоплениями нервных клеток ( с начальными отделами отходящих от их тел отростков). Отдельные ограниченные скопления серого вещества носят названия ядер.
Белое вещество образуют нервные волокна, покрытые миелиновой оболочкой (отростки нервных клеток, образующих серое вещество). Нервные волокна в головном и спинном мозге образуютпроводящие пути.
Переферические
нервы в зависимости от того, из
каких волокон (чувствительных либо
двигательных) они состоят, подразделяются
на чувствительные,
И.П. Павлов показал, что центральная нервная система может оказывать три рода воздействий на органы:
Центральная
нервная система воспринимает афферентную (
Дыхательная система
Человек и все высокоорганизованные живые существа нуждаются для своей нормальной жизнедеятельности в постоянном поступлении к тканям организма кислорода, который используется в сложном биохимическом процессе окисления питательных веществ, в результате чего выделяется энергия и образуется двуокись углерода и вода.
Дыхание - синоним и неотъемлемый признак жизни. "Пока дышу - надеюсь", утверждали древние римляне, а греки называли атмосферу "пастбищем жизни". Человек в день съедает примерно 1,24 кг пищи, выпивает 2 л воды, но вдыхает свыше 9 кг воздуха (более 10 000 л).
Дыхание - это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода. - В условиях покоя в организме за 1 минуту потребляется в среднем 250 - 300 мл О2 и выделяется 200 - 250 мл СО2. При физической работе большой мощности потребность в кислороде существенно возрастает и максимальное потребление кислорода (МПК) достигает у высокотренированных людей около 6 - 7 л/мин. Дыхание осуществляет перенос О2 из атмосферного воздуха к тканям организма, а в обратном направлении производит удаление СО2 из организма в атмосферу.
Различают
несколько этапов дыхания:
1. Внешнее дыхание - обмен газов между
атмосферой и альвеолами.
2. Обмен газов между альвеолами и кровью
легочных капилляров.
3. Транспорт газов кровью - процесс переноса
О2 от легких к тканям и СО2 от тканей - к
легким.
4. Обмен О2 и СО2 между кровью капилляров
и клетками тканей организма.
5. Внутреннее, или тканевое, дыхание - биологическое
окисление в митохондриях клетки.
Пищеварительная система
Для нормальной жизнедеятельности организму необходим пластический и энергетический материал. Эти вещества поступают в организм с пищей. Но только минеральные соли, вода и витамины усваиваются человеком в том виде, в котором они находятся в пище. Белки, жиры и углеводы попадают в организм в виде сложных комплексов, и для того чтобы всосаться и подвергнуться усвоению, требуется сложная физическая и химическая переработка пищи. При этом компоненты пищи должны утратить свою видовую специфичность, иначе они будут приняты системой иммунитета как чужеродные вещества. Для этих целей и служит система пищеварения.
Пищеварение - совокупность физических, химических и физиологических процессов, обеспечивающих обработку и превращение пищевых продуктов в простые химические соединения, способные усваиваться клетками организма. Эти процессы идут в определенной последовательности во всех отделах пищеварительного тракта (полости рта, глотке, пищеводе, желудке, тонкой и толстой кишке с участием печени и желчного пузыря, поджелудочной железы), что обеспечивается регуляторными механизмами различного уровня. Последовательная цепь процессов, приводящая к расщеплению пищевых веществ до мономеров, способных всасываться, носит название пищеварительного конвейера.
В зависимости от происхождения гидролитических ферментов пищеварение делят на 3 типа: собственное, симбионтное и аутолитическое.
Собственное
пищеварение осуществляется ферментами,
синтезированными железами человека или
животного.
Симбионтное пищеварение происходит под
влиянием ферментов, синтезированных
симбионтами макроорганизма (микроорганизмами)
пищеварительного тракта. Так происходит
переваривание клетчатки пищи в толстой
кишке.
Аутолитическое пищеварение осуществляется
под влиянием ферментов, содержащихся
в составе принимаемой пищи. Материнское
молоко содержит ферменты, необходимые
для его створаживания.
В зависимости от локализации процесса гидролиза питательных веществ различают внутриклеточное и внеклеточное пищеварение. Внутриклеточное пищеварение представляет собой процесс гидролиза веществ внутри клетки клеточными (лизосомальными) ферментами. Вещества поступают в клетку путем фагоцитоза и пиноцитоза. Внутриклеточное пищеварение характерно для простейших животных. У человека внутриклеточное пищеварение встречается в лейкоцитах и клетках лимфоретикуло-гистиоцитарной системы. У высших животных и человека пищеварение осуществляется внеклеточно.
Информация о работе Роль отдельных систем организма в обеспечении физического развития