Автор работы: Пользователь скрыл имя, 26 Марта 2012 в 19:41, доклад
Теперь немного поразмышляем. Если, например, в горах упал камень, а рядом не было никого, кто мог бы слышать звук его падения, существовал звук или нет? На вопрос можно ответить и положительно и отрицательно в равной степени, так как слово «звук» имеет двоякое значение. Поэтому нужно условиться, что же считать звуком – физическое явление в виде распространения звуковых колебаний в воздухе или ощущения слушателя. Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное.
Глава 1. Звук и его свойства…………………………………………………………….……..3
1.1 Что такое звук?........................……………………………………………………….…….3
1.2 Свойства звука и его характеристики…………………………………..………………...4
1.3 Инфразвук, ультразвук, гиперзвук………………………………………..........................5
Глава 2. Микрофон и его виды………………….…………………………….........................7
2.1. Виды и свойства…………………………...………………………………………………7
2.2. Эффект Доплера…………
СОДЕРЖАНИЕ
Глава 1. Звук
и его свойства…………………………………………
1.1 Что такое
звук?........................…
1.2 Свойства
звука и его характеристики…………
1.3 Инфразвук,
ультразвук, гиперзвук………………………………………......
Глава 2. Микрофон
и его виды………………….…………………………….......
2.1. Виды и свойства…………………………...………………………
2.2. Эффект Доплера……………………………………………………………
1.ЗВУК И ЕГО СВОЙСТВА
1.1 Что такое звук?
Звук – это распространяющиеся в упругих средах – газах, жидкостях и твёрдых телах – механические колебания, воспринимаемые органами слуха.
Теперь немного поразмышляем. Если, например, в горах упал камень, а рядом не было никого, кто мог бы слышать звук его падения, существовал звук или нет? На вопрос можно ответить и положительно и отрицательно в равной степени, так как слово «звук» имеет двоякое значение. Поэтому нужно условиться, что же считать звуком – физическое явление в виде распространения звуковых колебаний в воздухе или ощущения слушателя. Первое по существу является причиной, второе следствием, при этом первое понятие о звуке – объективное, второе – субъективное.
В
первом случае звук действительно представляет
собой поток энергии, текущей
подобно речному потоку. Такой
звук может изменить среду, через
которую он проходит, и сам изменяется
ею. Во втором случае под звуком мы понимаем
те ощущения, которые возникают у
слушателя при воздействии
При достижении звуковой волной какой-либо точки пространства, частицы вещества, до того не совершавшие упорядоченных движений, начинают колебаться. Любое движущееся тело, в том числе и колеблющееся, способно совершать работу, то есть оно обладает энергией. Следовательно, распространение звуковой волны сопровождается распространением энергии. Источником этой энергии является колеблющееся тело, которое и излучает в окружающее пространство(вещество) энергию.
Органы слуха человека способны воспринимать колебания с частотой от 15-20 герц до 16-20 тысяч герц. Механические колебания с указанными частотами называются звуковыми или акустическими(акустика – учение о звуке)
Итак, звук – это волновой колебательный процесс, происходящий в упругой среде и вызывающий слуховое ощущение. Однако восприимчивость человека к звукам избирательна, поэтому мы говорим о слышимых и неслышимых звуках. Совокупность тех и других в общем напоминает спектр солнечных лучей, в котором есть видимая область – от красного до фиолетового цвета и две невидимые – инфракрасная и ультрафиолетовая. По аналогии с солнечным спектром звуки, которые не воспринимаются человеческим ухом, называются инфразвуками, ультразвуками и гиперзвуками.
1.2. Свойства звука и его характеристики
Основные
физические характеристики звука –
частота и интенсивность
Периодом колебания называется время, в течение которого совершается одно полное колебание. Можно привести в пример качающийся маятник, когда он из крайнего левого положения перемещается в крайнее правое и возвращается обратно в исходное положение.
Частота колебаний – это число полных колебаний(периодов)за одну секунду. Эту единицу называют герцем (Гц). Чем больше частота колебаний, тем более высокий звук мы слышим, то есть звук имеет более высокий тон. В соответствии с принятой международной системой единиц, 1000 Гц называется килогерцем (кГц), а 1.000.000 – мегагерцем (МГц).
Распределение по частотам: слышимые звуки – в пределах 15Гц-20кГц, инфразвуки – ниже 15Гц; ультразвуки – в пределах 1,5·104 – 109 Гц; гиперзвуки - в пределах 109 – 1013Гц.
Ухо человека наиболее чувствительно к звукам с частотой от 2000 до 5000 кГц. Наибольшая острота слуха наблюдается в возраст 15-20 лет. С возрастом слух ухудшается.
Звуки различаются также по тембру. Основной тон звука сопровождается второстепенными тонами, которые всегда выше по частоте(обертона). Тембр – это качественная характеристика звука. Чем больше обертонов накладывается на основной тон, тем «сочнее» звук в музыкальном отношении.
Вторая основная характеристика – амплитуда колебаний. Это наибольшее отклонение от положения равновесия при гармонических колебаниях. На примере с маятником – максимальное отклонение его в крайнее левое положение, либо в крайнее правое положение. Амплитуда колебаний определяет интенсивность(силу) звука.
Сила звука, или его интенсивность, определяется количеством акустической энергии, протекающей за одну секунду через площадь в один квадратный сантиметр. Следовательно, интенсивность акустических волн зависит от величины акустического давления, создаваемого источником в среде.
С интенсивностью звука в свою очередь связана громкость. Чем больше интенсивность звука, тем он громче. Однако эти понятия не равнозначны. Громкость – это мера силы слухового ощущения, вызываемого звуком. Звук одинаковой интенсивности может создавать у различных людей неодинаковое по своей громкости слуховое восприятие. Каждый человек обладает своим порогом слышимости.
Звуки очень большой интенсивности человек перестаёт слышать и воспринимает их как ощущение давления и даже боли. Такую силу звука называют порогом болевого ощущения.
1.3. Инфразвук, ультразвук, гиперзвук
Инфразвук – упругие колебания и волны с частотами, лежащими ниже области слышимых человеком частот. Обычно за верхнюю границу инфразвукового диапазона принимают 15-4- Гц; такое определение условно, поскольку при достаточной интенсивности слуховое восприятие возникает и на частотах в единицы Гц, хотя при этом исчезает тональный характер ощущения, и делаются различимыми лишь отдельные циклы колебаний. Нижняя частотная граница инфразвука неопределённа. В настоящее время область его изучения простирается вниз примерно до 0,001 Гц. Таким образом диапазон инфразвуковых частот охватывает около 15-ти октав.
Инфразвуковые волны распространяются в воздушной и водной среде, а также в земной коре( в этом случае их называют сейсмическими и их изучает сейсмология). К инфразвукам относятся также низкочастотные колебания крупногабаритных конструкций, в частности транспортных средств, зданий.
Установлено,
что инфразвук с высоким
Ультразвук – упругие волны с частотами приблизительно от (1,5 – 2)·104Гц (15 – 20 кГц) до 109 Гц(1ГГц); область частотных волн от 109 до 1012 – 1013 Гц принято называть гиперзвуком. По частоте ультразвук удобно подразделять на 3 диапазона: ультразвук низких частот(1,5·104 – 105Гц), ультразвук средних частот(105 – 107Гц), область высоких частот ультразвука(107 – 109Гц). Каждый из этих диапазонов характеризуется своими специфическими особенностями генерации, приёма, распространения и применения.
Ультразвуковым волнам было найдено больше всего применения во многих областях человеческой деятельности: в промышленности, в медицине, в быту, ультразвук использовали для бурения нефтяных скважин и т.д. От искусственных источников можно получить ультразвук интенсивностью в несколько сотен Вт/см2.
Ультразвуки
могут издавать и воспринимать такие
животные, как собаки, кошки, дельфины,
муравьи, летучие мыши и др. Летучие
мыши во время полёта издают короткие
звуки высокого тона. В своём полёте
они руководствуются
Гиперзвук
– это упругие волны с
Область частот
гиперзвука соответствует частотам
электромагнитных колебаний дециметрового,
сантиметрового и миллиметрового диапазонов(так
называемые сверхвысокие частоты).Частота
109 Гц в воздухе при нормальном
атмосферном давлении и комнатной
температуре должна быть одного порядка
с длиной свободного пробега молекул
в воздухе при этих же условиях.
Однако упругие волны могут
2.МИКРОФОН И ЕГО ВИДЫ
2.1. Виды и свойства микрофона
Микрофон – один из основных звуковых приборов. Основное назначение микрофонов – преобразование звуковых колебаний в колебания электрического тока. Или – преобразование энергии звука в электрическую энергию. Поэтому по своему назначению микрофоны относятся к электроакустическому оборудованию.
Без
всякого сомнения, микрофон является
самым известным и
Вопрос о классификации микрофонов не так прост, как может показаться. Они различаются:
• по принципу
преобразования звуковой энергии в
электрическую (механо-электрические
характеристики);
• по принципу воздействия звука на диафрагму
(механо-акустические характеристики);
• по принципу зависимости выходного
сигнала от пространственной ориентации
(характеристики направленности);
• по принципу включения в звуковой тракт
(коммутационные характеристики).
К тому же микрофоны, сочетая в себе вышеназванные принципы в самой разной комбинации, имеют разный дизайн и предназначение - ручной, подвесной, петличный, накамерный, прикрепляемый к музыкальному инструменту, настольный и т.д.
Устройство динамического микрофона аналогично устройству динамического громкоговорителя. Последние часто используются и в качестве микрофона в рациях, переговорных устройствах, т.е. там, где компактность важнее качества звука. Диафрагма динамического микрофона связана с катушкой, находящейся в зазоре вокруг магнита. Продольные колебания прилегающего воздуха смещают диафрагму с катушкой относительно постоянного магнитного поля, что приводит к появлению на концах катушки переменного электрического потенциала, напряжение и частота которого пропорциональны силе и частоте звука, воздействующего на диафрагму.
В конденсаторном микрофоне звук воздействует на мембрану, являющуюся одной из обкладок конденсатора. Этот конденсатор включен в последовательную цепь с источником постоянного тока. При звуковом воздействии на мембрану она начинает колебаться, вызывая изменение емкости, которое, в свою очередь, превращает постоянное напряжение источника в переменное. В силу ряда особенностей использования конденсатора в качестве электроакустического преобразователя, конденсаторный микрофон всегда снабжается специальным усилителем, согласующим выход микрофона со входом нагрузки. Действительно, предложение включить конденсатор на вход усилителя низкой частоты вызовет у инженера-электронщика неадекватную реакцию.
Радиомикрофоны создаются на базе стандартных микрофонных головок (капсюлей), поэтому их акустические характеристики практически идентичны базовым проводным аналогам. Рассмотрение вопроса о принципах и системах FM-передачи, используемой в радиомикрофонной связи, выходит за рамки данной статьи. Практикам же необходимо учитывать, что одновременная работа нескольких радиомикрофонов может вызвать взаимные помехи. В случае, когда необходимо все-таки использовать большое число радиомикрофонов, следует обращаться к моделям, снабженным специальной функцией отстройки от помех, которую имеют далеко не все системы.