Автор работы: Пользователь скрыл имя, 30 Ноября 2012 в 21:38, задача
Цель задачи: Определение кратчайшего пути передачи продукции между цехами.
В данной задаче ершины отражают производственные элементы (цеха), а дуги – потоки сырья, материалов и продукции между ними.
Как кратчайшим путем (и, следовательно, с наименьшим расходом топлива и времени, наиболее дешево) попасть из одной вершины графа в другую, то есть попасть из пункта А в пункт Б? Для решения этой задачи каждой дуге ориентированного графа должно быть сопоставлено число - время движения по этой дуге от начальной вершины до конечной
Спицына Татьяна, группа А-103
Технологическая задача.
Цель задачи: Определение кратчайшего пути передачи продукции между цехами.
В данной задаче ершины отражают производственные элементы (цеха), а дуги –
потоки сырья, материалов и продукции между ними.
Как кратчайшим путем (и, следовательно, с наименьшим расходом топлива и времени, наиболее дешево) попасть из одной вершины графа в другую, то есть попасть из пункта А в пункт Б? Для решения этой задачи каждой дуге ориентированного графа должно быть сопоставлено число - время движения по этой дуге от начальной вершины до конечной. Рассмотрим пример (рис.1).
Рис.1.
Ситуацию можно описать не только ориентированным графом с весами, приписанными дугам, но и таблицей (табл.1). В этой таблице двум вершинам – началу пути и концу пути – ставится в соответствие время в пути. В табл.1 рассматриваются пути без промежуточных остановок. Более сложные маршруты составляются из элементарных отрезков, перечисленных в табл.1.
Таблица 1.
Вопрос: как кратчайшим путем попасть из вершины 1 в вершину 4?
Решение. Введем обозначение: С(Т) - длина кратчайшего пути из вершины 1 в вершину Т. (Поскольку любой путь, который надо рассмотреть, состоит из дуг, а дуг конечное число, и каждая входит не более одного раза, то претендентов на кратчайший путь конечное число, и минимум из конечного числа элементов всегда достигается.) Рассматриваемая задача состоит в вычислении С(4) и указании пути, на котором этот минимум достигается.
Для исходных данных, представленных на рис.1 и в табл.1, в вершину 3 входит только одна стрелка, как раз из вершины 1, и около этой стрелки стоит ее длина, равная 1, поэтому С(3) = 1. Кроме того, очевидно, что С(1) = 0.
В вершину 4 можно попасть либо из вершины 2, пройдя путь, равный 4, либо из вершины 5, пройдя путь, равный 5. Поэтому справедливо соотношение
С(4) = min {С(2) + 4; С(5) + 5}.
Таким образом, проведена реструктуризация (упрощение) задачи - нахождение С(4) сведено к нахождению С(2) и С(5).
В вершину 5 можно попасть либо из вершины 3, пройдя путь, равный 2, либо из вершины 6, пройдя путь, равный 3. Поэтому справедливо соотношение
С(5) = min {С(3) + 2; С(6) + 3}.
Мы знаем, что С(3) = 1. Поэтому
С(5) = min {3; С(6) + 3}.
Поскольку очевидно, что С(6) - положительное число, то из последнего соотношения вытекает, что С(5) = 3.
В вершину 2 можно попасть либо из вершины 1, пройдя путь, равный 7, либо из вершины 3, пройдя путь, равный 5, либо из вершины 5, пройдя путь, равный 2. Поэтому справедливо соотношение
С(2) = min {С(1) + 7; С(3) + 5; С(5) + 2}.
Нам известно, что С(1) = 0, С(3) = 1, С(5) = 3. Поэтому
С(2) = min {0 + 7; 1 + 5; 3 + 2} = 5.
Теперь мы можем найти С(4):
С(4) = min {С(2) + 4; С(5) + 5} = min {5 + 4; 3 + 5} = 8.
Таким образом, длина кратчайшего пути равна 8. Из последнего соотношения ясно, что в вершину 4 надо идти через вершину 5. Возвращаясь к вычислению С(5), видим, что в вершину 5 надо идти через вершину 3. А в вершину 3 можно попасть только из вершины 1. Итак, кратчайший путь таков:
1 → 3 → 5 → 4 .
Задача о кратчайшем пути для конкретных исходных данных (рис.1 и табл.1) полностью решена.
Информация о работе Нахождение кратчайшего пути с помощью графов