Дуговая наплавка и резка. Материалы для газовой сварки и резки.

Автор работы: Пользователь скрыл имя, 26 Марта 2013 в 03:51, курсовая работа

Описание

К рабочим поверхностям деталей машин в зависимости от условий их эксплуатации предъявляют определенные требования по различным свойствам: износостойкости, жаростойкости, коррозионной стойкости и др. Прочность деталей достигается путем использования соответствующих материалов с необходимыми исходными свойствами. Иными словами, при проектировании машин необходимо исходить из прочности современных материалов.

Содержание

Введение 3
1. Преимущества и недостатки дуговой наплавки под флюсом 4
2. Наплавка электродной лентой под флюсом 5
3. Технология наплавки холоднокатаной электродной лентой 7
4. Влияние параметров режима на качество наплавки 11
5. Общие сведения о металлических (присадочных) материалах 14
6. Плавящиеся сварочные проволоки, стержни и пластины 16
7. Неплавящиеся электродные стержни, материалы электродов для машин электрической контактной сварки 20
8. Требования к подготовке и хранению металлических сварочных материалов 23
Заключение 25
Список используемой литературы 26

Работа состоит из  1 файл

Изотов ПЭР.docx

— 149.67 Кб (Скачать документ)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1. Плавящиеся сварочные проволоки, стержни и пластины

 

При сварке под флюсом и в защитных газах  и при электрошлаковой сварке применяется проволока без покрытия – голая электродная проволока.

Стальную  сварочную проволоку изготавливают  по ГОСТ 2246-70*. Сварочная проволока  разделяется на низкоуглеродистую, легированную и высоколегированную. Всего выпускается 77 марок проволоки. Путем соответствующего выбора состава плавящегося электрода можно изменять состав металла шва – легировать его нужными элементами. Обычно состав сварочной проволоки берется близким к составу свариваемого металла.

Проволока для  изготовления электродов для сварки : алюминия и его сплавов маркируется: АО, А1, АД, АД1. АЛц, АМг и т. д., где цифра показывает общее количество примесей (ГОСТ 7871—75). Выпускается также стальная, наплавочная проволока по ГОСТ 10543—82.

Для сварки меди и ее сплавов применяют электроды  со стержнями из медной проволоки  M1 и М2, бронзы Бр КМцЗ-1 и др. Медь маркируется буквой М, бронзы — буквами Бр.

Обозначение сварочной проволоки состоит:

1. Указывается диаметр проволоки в миллиметрах.

2. Далее следует индекс «Св» — сварочная.

3. Цифра за  индексом обозначает среднее  содержание углерода в сотых  долях процента.

4. Обозначение  легирующих элементов в проволоке  и их количество приняты такими  же, как и для марок сталей.

Например, условное обозначение проволоки диаметром  2 мм из низкоуглеродистой кремнемарганцевой стали, содержащего 1,4-1,7% Mn и 0,60-0,85% Si - 2Св-08ГС.

Условное  обозначение легирующих элементов  в проволоке приведено в таблице  №1.

 

 

 

 

 

 

 

 

 

 

Таблица №1 - Условное обозначение легирующих элементов в сварочной проволоке.

Элемент

Условное обозначение

Элемент

Условное обозначение

в таблице

Менделеева

в марке стали

в таблицеМенделеева

в маркестали

Марганец

Кремний

Хром

Никель

Молибден

Вольфрам

Селен

Алюминий

Mn

Si

Cr

Ni

Mo

W

Se

Al

Г

С Х Н М В Е

Ю

Титан

Ниобий

Ванадий

Кобальт

Медь

Бор

Азот

Цирконий

Ti

Nb

V

Co

Cu

B

N

Zr

Т

Б

Ф

К

Д

Р

А*

Ц


 

По виду поверхности  низкоуглеродистая и легированная проволока подразделяется на неомедненную и омедненную.

Проволоку поставляют потребителю в мотках, а так  же в кассетах, массой от 15 - 80 кг. На каждой бухте крепят металлическую бирку с указанием завода-изготовителя, условного обозначения проволоки, номера партии и клейма технического контроля.

Для сварки вручную проволока рубится на стержни длинной 350-400 мм.

Плавящиеся  электродные пластины применяют  при электрошлаковой сварке. Это  позволяет увеличить производительность процесса.

При ручной дуговой сварке плавящимся электродом сварка производится металлическим  электродным стержнем, на поверхность  которого путем окунания в жидкую массу или путем опрессовки под давлением наносится специальное электродное покрытие определенного состава и толщины. Электродный стержень с нанесенным на его поверхность слоем покрытия называют электродом.

По назначению металлические электроды для  ручной дуговой сварки сталей и наплавки поверхностных слоев с особыми  свойствами, изготовляемые способом опрессовки, подразделяются (ГОСТ 9466—75):

-для сварки  углеродистых и низколегированных  сталей с временным сопротивлением  разрыву до 60 кгс/мм2 (600 МПа), с условным обозначением - У;

-для сварки  легированных сталей с временным  сопротивлением разрыву свыше  60 кгс/мм2 (600 МПа) — Л;

-для сварки  легированных теплоустойчивых сталей - Т;

-для сварки  высоколегированных сталей с  особыми свойствами — В;

-для наплавки  поверхностных слоев с особыми  свойствами — Н.

По толщине  покрытия электроды подразделяются на электроды с тонким, средним, толстым  и особо толстым покрытиями. ГОСТ 9466—75 предусматривает также три  группы электродов — 1, 2, 3, характеризующиеся  требованиями к качеству (точности) изготовления электродов, состоянием поверхности покрытия, а также  содержанием серы и фосфора в  наплавленном металле.

По виду покрытия электроды подразделяются:

с кислым покрытием  А, с основным покрытием — Б, с  целлюлозным покрытием — Ц, с рутиловым покрытием — Р, с покрытием смешанного вида — с двойным обозначением, с прочими видами покрытий — П. Электродные покрытия состоят из шлакообразующих, газообразующих, раскисляющих, легирующих, стабилизирующих и связующих (клеящих) компонентов.

В зависимости  от того, в каком пространственном положении выполняется сварка, электроды подразделяются:

для сварки во всех положениях с условным обозначением 1;

для сварки во всех положениях, кроме вертикального сверху вниз,— 2; для положений нижнего, горизонтального на вертикальной плоскости и вертикального снизу вверх 3; для нижнего и нижнего «в лодочку» — 4.

Электроды подразделяются по роду и полярности тока, а также  по номинальному напряжению холостого  хода источника питания сварочной дуги переменного тока.

Подразделение электродов по типам выполнено в ГОСТ 9467-75, 10051-75 и 10052-75. По ГОСТ 9467-75 предусмотрено 9 типов электродов для сварки углеродистых и низколегированных сталей (Э38, Э42, Э42А, Э46, Э46А, 350, Э50А, Э55 и Э60), 5 типов электродов для сварки легированных сталей повышенной и высокой прочности (ЭТО, Э85, Э100, Э125 и Э150) и 9 типов электродов для сварки легированных теплоустойчивых сталей (Э-09М, Э-09МХ, Э-09Х1М, Э-05Х2М, Э-09Х2М1, Э-09Х1МФ, Э-10Х1М1НФБ, Э-10ХЗМ1БФ, Э-10Х5МФ). Обозначают электроды для сварки углеродистых и легированных сталей по ГОСТ 9466—75. Например, электроды типа Э46А по ГОСТ 9467—75 марки УОНИ-13/45 диаметром 3,0 мм для сварки углеродистых и низколегированных сталей обозначаются так:

Э46А-УОНИ-13/45-3,0)-УД2

Е43 2(5)-Б10 Г0СТ 9466-75

ГОСТ 9467-75,

где Э — электрод для дуговой сварки; 46 — минимальное гарантируемое временное сопротивление разрыву, обусловленное ГОСТ 9467—75; А — улучшенный тип электродов; буква У обозначает, что электроды предназначены для сварки углеродистых и низколегированных конструкционных сталей с временным сопротивлением разрыву до 60 кгс/мм2 (600 МПа); Д — толщина покрытия; 2 — вторая группа. В знаменателе цифры 43 2 (5) указывают характеристики наплавленного металла и металла шва; буква Б обозначает основной тип покрытия; 1 — пространственное положение, в котором может выполняться сварка, О — постоянный ток обратной полярности. Для электродов, применяемых для сварки углеродистых и низколегированных сталей с временным сопротивлением разрыву до 60 кгс/мм2 (600 МПа), после буквы Е тире не ставится. Для сварки высоколегированных сталей с особыми свойствами электроды согласно ГОСТ 10052—75 классифицируются по химическому составу наплавленного металла и его механическим свойствам. ГОСТ 10052—75 предусматривает 49 типов электродов. Обозначения типов электродов состоят из индекса Э и следующих за ним цифр и букв. Две цифры, стоящие после индекса, указывают среднее содержание углерода в наплавленном металле в сотых долях процента. Химические элементы, содержащиеся в наплавленном металле, обозначены следующими буквами: А — азот, Б — ниобий, В — вольфрам, Г – марганец Д — медь, М — молибден, Н — никель., С — кремний, Т — титан, Ф — ванадий, X — хром. Цифры, следующие за буквенными обозначениями химических элементов, указывают среднее содержание элемента в процентах. После буквенного обозначения элементов, среднее содержание которых в наплавленном металле составляет менее 1,5% цифры не проставляются.

Электроды для  дуговой наплавки регламентируются ГОСТ 10051—75 (типы электродов, которые характеризуются химическим составом наплавленного металла и его твердостью).

 

 

 

 

 

 

 

 

 

 

 

 

  1. Неплавящиеся электродные стержни, материалы электродов для машин электрической контактной сварки

Сварка  неплавящимся электродом в защитных газах (СНЭЗГ) — это процесс, в  котором в качестве источника  теплоты применяют дуговой разряд, возбуждаемый между вольфрамовым электродом и изделием. В качестве неплавящегося  электрода наиболее широко применяют  вольфрамовые стержни. Они служат только для подвода тока к зоне дуги. Электроды имеют круглую форму. Для сварки в среде инертных газов  применяются электроды диаметром 5—10 мм из чистого вольфрама (ЭВЧ), вольфрама с присадками: диоксида тория (ЭВТ), оксидов лантана (ЭВЛ) иттрия (ЭВИ).

Широкое применение вольфрама для сварки обусловлено его тугоплавкостью (температура плавления 3500°С; температура кипения 5900°С) и высокими электропроводностью и теплопроводностью, самой низкой скоростью испарения. Вольфрам - самый тугоплавкий из известных материалов (по температуре плавления уступает лишь углероду). Попытки замены вольфрама другим, более дешевым материалом пока не увенчались успехом.

Электродные стержни изготавливают из чистого вольфрама или из вольфрама с добавкой около 2% окиси тория и циркония, либо окиси лантана, либо окиси иттрия 1—3,5 %. Добавка тория снижает эффективный потенциал ионизации, в результате чего облегчается процесс зажигания и увеличивается устойчивость дугового разряда и повышается стойкость электрода, увеличивает примерно на 30—50 % допустимый сварочный ток. Наличие в вольфрамовом электроде тория позволяет значительно повысить плотность тока, так как при этом конец электрода не меняет формы в процессе сварки. Окись тория добавляется в вольфрамовый порошок перед формовкой и спекания электрода. Цирконий наносят на поверхность вольфрамового электрода. Положительное влияние на стойкость вольфрамового электрода оказывает шлифовка его поверхности. Для облегчения манипулирования электродом сплошной вольфрамовый стержень в некоторых случаях заменяют гибким тросиком, сплетенным из большого числа проволок. Вольфрамовый электрод ввиду его окисления используется только при сварке с защитой области дуги инертными газами. Вольфрамовые электроды обеспечивают максимальную токовую нагрузку по сравнению с другими типами вольфрамовых электродов. Они рекомендуются для сварки как на переменном, так и на постоянном токе.

Пример условного обозначения электрода марки ЭВЛ диаметром 2,0 мм длинной - 150мм: «Электрод вольфрамовый ЭВЛ-2-150 — ГОСТ 23949—80».

У нас  в стране широкое распространение  получили электроды марок ЭВЛ  и ЭВИ. Они выдерживают большую  токовую нагрузку и имеют повышенную эрозионную стойкость при сварке по сравнению с электродами марки  ЭВЧ. Диаметр вольфрамового электрода  выбирается в зависимости от величины сварочного тока.

Применяемые вольфрамовые электроды должны отвечать требованиям ГОСТ 23949—80 .

Электроды диаметром 3,0 мм и более допускается маркировать снятием фасок 1мм ∙ 45°. Маркировка должна быть нанесена на одном из концов электрода. Маркировка может быть нанесена на торец в виде полосы или точки на поверхности у торца на 5—10 мм.

Различные марки электродов имеют специфические особенности, которые необходимо учитывать при их выборе для конкретных условий сварки.

Эрозия  вольфрамовых электродов в большой  мере зависит от рода и значения сварочного тока, марки электрода, эффективности  его охлаждения и условий газовой  защиты. Если охлаждением электрода  при данном значении сварочного тока поддерживается температура, при которой  термоэмиссия электронов достаточна для обеспечения потребной плотности тока, то эрозия в этом случае минимальная. При переохлаждении электрода увеличиваются доля ионного тока между электродом и плазмой столба, тепловой поток в тело электрода, а вместе с ним и эрозия. При аргонодуговой сварке на токах до 500А удельный расход вольфрама колеблется в зависимости от технологических условий в пределах 1∙10-8—8∙10-6 г/(А∙с). Поэтому вопрос о выборе оптимального теплового режима вольфрамового электрода является весьма важным.

Боковая поверхность и конец электрода  при правильном выборе параметров режима сварки и размеров электрода должны блестеть, матовая поверхность означает, что тепловая нагрузка на электрод превышает рекомендуемую. Если поверхность  электрода после сварки приобретает  синий, черный цвет или имеет зеленый  налет, это означает, что расход аргона недостаточен или время продувки аргона после отключения дуги мало.

При длительной работе вольфрамового электрода  на его рабочей поверхности у  торца образуются наросты окислов  вольфрама, так называемые коронки, которые могут приводить к  произвольному перемещению катодного  пятна и блужданию дуги по поверхности  сварочной ванны. Вероятность образования  «коронки» уменьшается при интенсивном  охлаждении электрода и улучшении  газовой защиты.

Заточка вольфрамовых электродов должна производиться  твердыми дисками с мелким зерном для избегания образования заусенцев  и бороздок на торце электрода. Круг, на котором затачиваются вольфрамовые электроды, не должен применяться для других материалов, чтобы исключить попадание загрязнений. Вольфрамовые электроды используются с заточкой под углом 20—90°.

Диаметр притупления вольфрамового электрода (катода) и угол заточки влияют на проплавляющую способность дуги. При уменьшении диаметра притупления  повышается концентрация теплового  потока, растет давление дуги и плотность  тока. Острая заточка электрода исключает  блуждание катодного пятна по поверхности электрода.

Информация о работе Дуговая наплавка и резка. Материалы для газовой сварки и резки.