Автор работы: Пользователь скрыл имя, 21 Сентября 2011 в 14:04, реферат
Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.
Материалы на основе акриловых смол термопластичны, но более теплостойки и дают покрытия эластичные, стойкие к ударным нагрузкам, с хорошей адгезией к металлам. Акриловые эмали (АК и АС) могут работать в условиях 98-100%-ной влажности при температуре 55-60°С. При нанесении на эпоксидный грунт покрытие сохраняет защитные свойства в течение 3 — 6 лет.
Покрытия на основе термореактивных смол. Алкидные материалы вырабатывают на основе глифталевой (ГФ) и пентафталевой (ПФ) смол, часто модифицированных растительными маслами. Покрытия обладают высокой твердостью, прочностью, удовлетворительной адгезией к различным материалам. При введении алюминиевой пудры покрытия выдерживает длительно температуру 120°С и кратковременно температуру до 300°С. К недостаткам алкидных покрытий, относится склонность к старению, недостаточная устойчивость к условиям тропического климата и щелочным средам.
Эпоксидные лакокрасочные материалы на основе эпоксидных смол и их модификаций с различными отвердителями дают покрытия ЭП, обладающие хорошей адгезией к металлам и неметаллическим материалам, значительной твердостью, химической стойкостью к различным средам, в том числе к щелочным и, высокими электроизоляционными свойствами. Покрытия при сушке не дают усадки и стойки к колебаниям температуры.
Полиэфирным
покрытиям присуща большая
Полиуретановые лаки, эмали, грунты имеют очень хорошую адгезию к различным материалам, хорошо сопротивляются истиранию, эластичны, атмосферостойкие, газонепроницаемы, могут работать в контакте с водой, маслами, бензином и растворителями, являются хорошими диэлектриками. Недостатком этих материалов, ограничивающих их применение, является токсичность.
Наиболее
теплостойки лакокрасочные
Полиимидные покрытия теплостойки, выдерживают тепловые удары от - 196 до + 340°С. Покрытия прочные, устойчивы к воздействию растворителей и кислот, стойки к радиации и обладают диэлектрическими свойствами. Получение этих покрытий требует высокой температуры и тщательного соблюдения технологии.
2. СРАВНИТЕЛЬНЫЕ СВОЙСТВА ЛАКОКРАСОЧНЫХ ПОКРЫТИЙ
По условиям эксплуатации лакокрасочные покрытия подразделяют на стойкие внутри помещения; атмосферостойкие; химически стойкие; водостойкие; термостойкие; масло- и бензостойкие и электроизоляционные. Термостойкость (в°С) различных лакокрасочных покрытий приведена ниже:
ДРЕВЕСНЫЕ МАТЕРИАЛЫ_____________
Древесина с давних времен используется в качестве конструкционного материала в различных отраслях промышленности и применяется как в натуральном виде, так и в виде разнообразных древесных материалов.
К достоинствам древесины как конструкционного материала относятся достаточно высокая механическая прочность и небольшая объемная масса и, следовательно, высокая удельная прочность, хорошее сопротивление ударным и вибрационным нагрузкам. Теплофизические свойства древесины характеризуются малой теплопроводностью и в 2 — 3 раза меньшим, чем у стали, температурным коэффициентом линейного расширения. Древесина имеет высокую химическую стойкость к ряду кислот, солям, маслам, газам. Важными свойствами древесины являются ее способность к склеиванию, возможность быстрого соединения гвоздями, шурупами, легкость механической обработки и гнутья.
Наряду с указанными достоинствами древесина обладает рядом недостатков, ограничивающих ее применение как конструкционного материала. Можно отметить следующие недостатки: гигроскопичность, которая является причиной отсутствия у деталей из древесных материалов стабильности формы, размеров и прочностных свойств, меняющихся с изменением влажности; склонность к поражению грибковыми заболеваниями; отсутствие огнестойкости; низкий модуль упругости; анизотропия механических свойств, которые в силу волокнистого строения древесины различны в разных направлениях действия сил; неоднородность строения, в результате которой свойства материала различны не только в пределах одной породы; но в пределах одного ствола.
1. ОСНОВНЫЕ СВЕДЕНИЯ О СТРОЕНИИ ДРЕВЕСИНЫ
Древесина состоит из органических веществ: 43 — 45% целлюлозы (С6Н10О5), 19 — 29% лигнина, остальное — низкомолекулярные углеводы и другие компоненты. Свойства древесины обусловливаются ее строением. Так как древесина является волокнистым материалом, ее строение изучают по трем разрезам: торцовому (поперечному), перпендикулярному к волокнам; радиальному, проходящему через ось ствола, тангентальному, идущему вдоль ствола на некотором расстоянии от него (рис. 6).
Рис. 6. Основные разрезы ствола дерева:
1 — поперечный или торцовый;
2 — радиальный;
3
— тангентальный
Строение древесины, ширина годичных колец, содержание летней зоны древесины обусловливают механическую прочность как хвойных, так и лиственных пород. На свойства древесных материалов влияет наличие в древесине различных пороков.
Пороками древесины называются отклонения от нормального строения, а также повреждения микологического и механического характера. Пороки снижают физико-механические свойства древесины. В конструкционных они допускаются с ограничениями, предусмотренными техническими условиями. На механические свойства здоровой древесины влияют сучки, трещины, наклон волокон (косослой).
К паразитным порокам относятся грибковые (микологические) повреждения древесины. Для развития грибов требуются определенные условия; наиболее благоприятны для них температура 2 —40С, влажность 30 — 60% и наличие воздуха, без которого развитие гриба невозможно. В результате грибкового поражения древесина разрушается, превращаясь в труху, гниль. При неправильном хранении древесины часто возникает синева, которая быстро распространяется и проникает в глубь материала. Синева существенного влияния на физико-механические свойства древесины не оказывает, однако при сильном развитии может вызвать поражения более опасными грибами.
Повреждения насекомыми (червоточина) встречаются в древесине всех пород. Наличие червоточины влияет на сортность древесины.
2. СВОЙСТВА ДРЕВЕСИНЫ И ЗАЩИТА ДРЕВЕСИНЫ ОТ УВЛАЖНЕНИЯ, ЗАГНИВАНИЯ И ВОСПЛАМЕНЕНИЯ
Физические
свойства. Для древесины как
Влажностью древесины называется количество воды, заключающейся в ней, выраженное в процентах. Влажность определяется по формуле
m — mo
W= ———— · 100%,
m0
где m — масса влажного образца при данной влажности в г; m0 — масса образца в абсолютно сухом состоянии в г (за m0 принимается масса образца, высушенного при 100 + 5°С).
Вода, содержащаяся в древесине, бывает двух видов: свободная (капиллярная) вода, заполняющая внутренние пустоты, и связанная (гигроскопическая), находящаяся в клеточных оболочках. Таким образом, влажность древесины складывается из влаги связанной и свободной. При высыхании дерево теряет сначала свободную воду, а затем начинает терять связанную воду.
Состояние древесины, при котором в ней имеется только связанная влага, называется точкой насыщения волокон. Для различных древесных пород максимальное количество связанной влаги колеблется от 23 до 30%. Свежесрубленной древесине соответствует влажность 50 — 100%; в древесине, пролежавшей долгое время на воздухе (воздушно-сухой), устанавливается влажность 10 — 20%, в комнатных условиях (комнатно-сухая древесина) — влажность 7 —10%, а для абсолютно сухой древесины влажность нулевая. Влажность, отвечающая условиям производственного помещения, носит название производственной влажности. За стандартную влажность древесины принята влажность 15%, которая представляет собой среднюю влажность воздушно-сухой древесины. Все свойства древесины для возможности сравнения устанавливаются при стандартной влажности 15%.' Производственная, влажность должна быть равна эксплуатационной или на 2% ниже (иначе древесина будет усыхать).
Изменение размеров и формы древесины связано с изменением ее влажности. Эти изменения выражаются в усушке, разбухании и короблении. При высыхании древесины из нее вначале удаляется свободная влага, при этом размеры клеток не изменяются (уменьшается только масса); с момента точки насыщения волокна стенки волокон древесины теряют связанную влагу и сокращаются в размерах.
Усушкой древесины называется уменьшение линейных размеров и объема древесины при высыхании (выражается в процентах). Усушка зависит от направления: так, наибольшая усушка происходит в тангентальном направлении, наименьшая — вдоль волокон.
Для определения усушки практически пользуются коэффициентом усушки К, который представляет собой среднюю усушку при изменении влажности на 1%, и определяется по формуле
Y
K= ——
W
Для различных пород полная усушка в радиальном направлении Ур = = 3-5%, в тангентальном Уг = 6 - 10%. Коэффициенты усушки в радиальном направлении Kр = 0,09 ~0,31%, в тангентальном Кт = 0,17 — 0,43%; коэффициент объемной усушки Ко = 0,32 - 0,7%. Усушка вдоль волокон составляет 0,1—0,35% и практически не учитывается.
Усушка представляет собой отрицательное явление, во-первых, потому, что ее необходимо учитывать при изготовлении деталей, и, во-вторых, она служит причиной появления в древесине внутренних напряжений, вызывающих трещины и коробления (рис.7).
Древесина разных пород имеет одинаковый химический состав, поэтому плотность вещества, образующего стенки клеток, принимается равной 1,54 г/см3. Для практических целей важно знать объемную массу у, которая зависит от влажности материала и коэффициента объемной усушки. Значение у15 древесины составляет 0,34-0,98 г/см3. Более легкими породами являются сосна, ель, пихта, липа, осина, ольха; очень тяжелыми -граб, груша, самшит. Чем больше объемная масса, тем плотнее древесина и тем лучше она сопротивляется нагрузкам.
Рис. 7. Виды коробления пиломатериалов:
1 — изменение формы поперечного сечения брусков; 2 — поперечное коробление досок; 3 —
продольное коробление доски; 4 - коробление косослойной доски
Механические свойства древесины. Древесина анизотропна, и ее свойства зависят от влажности и других факторов. В связи с этим показатели механических свойств для возможности их сравнения и применения в расчете деревянных деталей на прочность относят к древесине, не имеющей пороков и при одинаковой влажности 15%.
Механические свойства наиболее распространенных пород древесины при W= 15% приведены в табл. 5.
Средние значения пределов прочности древесины вдоль волокон находятся в пределах: Ơс от 3,42 до 5,49 кгс/мм2; Ơв от 7,61 до 16,1 кгс/мм2 (в отдельных случаях до 27 кгс/мм2); Ơв — поперек волокон ниже в 6 — 30 раз, чем вдоль. Сопротивление сдвигу в плоскости волокон, (скалывание) невелико и составляет 1/6-1/8 Ơс (продольное направление), Ơизг в 1,5-2 раза