Неметаллические материалы

Автор работы: Пользователь скрыл имя, 21 Сентября 2011 в 14:04, реферат

Описание

Неметаллические материалы являются не только заменителями металлов, но и применяются как самостоятельные, иногда даже незаменимые материалы. Отдельные материалы обладают высокой механической прочностью, легкостью, термической и химической стойкостью, высокими электроизоляционными характеристиками, оптической прозрачностью и т. п. Особо следует отметить технологичность неметаллических материалов.

Работа состоит из  1 файл

kursovik.doc

— 745.00 Кб (Скачать документ)

   Повышение адгезии матрицы к волокнам достигается  поверхностной' обработкой последних. С этой целью применяют вискеризацию — введение нитевидных кристаллов в межволоконное пространство. Вискеризация осуществляется путем осаждения нитевидных кристаллов на поверхность волокон («мохнатые» волокна с выращенными на них перпендикулярно длине монокристаллами — «усами»). Этим достигается повышение прочности материала при сдвиге в 1,5 — 2 раза, модуля упругости при сдвиге и прочности при сжатии на 40 — 50%. По характеру матрицы композиционные материалы подразделяют на полимерные, углеродные и металлические. По упрочнителю их можно классифицировать на карбоволокниты (углепласты), содержащие в качестве упрочняющего материала углеродные волокна; бороволокниты с упрочнителями в виде борных волокон; органоволокниты с синтетическими волокнами; металлы, армированные волокнами

                      

                             Свойства армирующих волокон                           таблица 2 

  Плот- Предел Модуль Относи- Температура
    Тип волокна
ность, прочно- упругости, тельное стабильности.
  г/см3 сти, 103  
удлинение, %
    СС
    кгс/мм2 кгс/мм2  
 
 
Стеклянные:          
алюмоборосиликатные 2,5-2,6 140-220 6 2-3
    700*
высокомодульные 2,5-2,6 390-470 9,5-11 4,4-5. До 870
Углеродные высокомодульные 1,75-1,95 230-290 28-31 0,7-1
    2200
Борные 2,5 280-320 39-40 0,7-0,8  
TТразм = 3650) 980
          пл = 2200)
Окись алюминия 3,97 210 17 1000 - 1500
Карбид  кремния 3,18 350 42 _ (Tпл = 2050) 1200 - 1700
Синтетические:         (Tпл = 2090)
полиамидное (капрон) 1,14 77-85 0,32-0,35 13-17 196-216**
полиэфирное (лавсан) 1,38 48-62 1,02-1,1 14-15 235-255**
 
полиакрилонитрильное  (нитрон)  

поливинилспиртовое  (винол)

1,17 46-56 0,46-0,58 16-17
Поливинилспиртовое (винол) 1,26 60-100 2,5 7-12
    -
Из  ароматического полиамида   1,4 200-280 11-12 2-5  
Проволоки:          
вольфрамовая 19,3 220-430 35-42
молибденовая 10.2 215 36 _
    __
титановая 4,72 190-200 12  
    _
стальная 7,9 420 20
    -

*Температура  плавления.

**Температура деструкции

   Преимуществом композиционных материалов являются высокие прочность и жесткость (для карбоволокнитов Ơв = 65 - 170 кгс/мм2, Е= 12000 - 18 000 кгс/мм2; для бороволокнитов                  Ơв = 90 - 175 кгс/мм2, Е =  21400 - 27000 кгс/мм2), хорошее сопротивление хрупкому разрушению, жаропрочность и термическая стабильность. Плотность композиционных материалов составляет от 1,35 до 4,8 г/см3.

  Композиционные  материалы являются перспективными конструкционными материалами для различных отраслей машиностроения.

  1. КАРБОВОЛОКНИТЫ

  Карбоволокниты (углепласты) представляют собой композиции, состоящие из полимерного связующего (матрицы) и упрочнителей (наполнителей) в виде углеродных волокон (карбоволокон).

  Углеродные волокна получают термообработкой органических волокон. В зависимости от температуры термообработки и содержащегося углерода волокна подразделяют на частично карбонизованные (900°С, 85-90%), карбонизованные (900-1500°С, 95-99%) и графитированные, (1500 — 3000°С, >99.%). Два последних типа имеют наибольшее значение.

  В зависимости от формы исходного сырья углеродные волокна могут быть в виде нитей, жгутов, войлока, тканей; волокна можно перерабатывать на обычном текстильном оборудовании.

  Практическое  применение нашли вискозные кордные волокна (ВК) и полиакрилонитрильные (П АН-вол окна).

  Свойства  волокон зависят от термообработки, с увеличением температуры происходит образование гексагональных углеродных слоев, их рост и упорядочение. Структура волокон фибриллярная. Каждая фибрилла состоит из лентообразных микрофибрилл, разделенных узкими и длинными продольными порами.

  В результате вытяжки достигается ориентация кристаллитов, что позволяет получать высокопрочные и высокомодульные углеродные волокна.

  Обычные углеродные волокна имеют Ơв = 50 - 100 кгс/мм2 и Е = = 2000--7000 кгс/мм2; для высокопрочных и высокомодульных волокон Ơв >150 кгс/мм2 и Е> 15000 кгс/мм2. По удельным прочности (Ơ/р) и жесткости (Е/р) последние превосходят все жаростойкие волокнистые материалы.

  Высокая энергия связи С — С углеродных волокон позволяет им сохранять прочность при очень высоких температурах (в нейтральной и восстановительной средах до 2200°С), а также при низких температурах. От окисления поверхности волокна предохраняют защитными, покрытиями            (пиролитическими). В отличие от стеклянных волокон карбоволокна плохо смачиваются связующим (низкая поверхностная энергия), поэтому их подвергают травлению, аппретированию, вискеризации.

  Связующими  служат синтетические полимеры (полимерные карбоволокниты); синтетические полимеры, подвергнутые пиролизу (коксованные карбоволокниты); пиролитический углерод (пироуглеродные карбоволокниты).

  В качестве полимерных связующих применяют  эпоксидные, фенолоформальдегидные. смолы, полиимиды и др.

  Эпоксифенольные карбоволокниты КМУ-1л, упрочненный углеродной лентой, и КМУ-lл на жгуте, вискеризованном нитевидными кристаллами, могут длительно работать при температуре до 200°С.

  Карбоволокниты  КМУ-3 и КМУ-Зл получают на эпоксианилиноформальдегидном связущем, их можно эксплуатировать при температуре до 100°С, они наиболее технологичны. Карбоволокниты КМУ-2 и КМУ-2л на основе полиимидного связущего можно применять при температуре до 300°С [43].

  Карбоволокниты  отличаются высокой статической  и динамической выносливостью (рис. 215), сохраняют это свойство при нормальной и очень низкой температуре (высокая теплопроводность волокна предотвращает саморазогрев материала за счет внутреннего трения). Они водо- и химически стойки. После воздействия на воздухе рентгеновского излучения Ơи и Εи почти не изменяются.

  Теплопроводность  углепластиков в 1,5-2 раза выше, чем  у стеклопластиков. Они имеют следующие электрические свойства: р„ = 0,0024 4- 0,0034 Ом-см   (вдоль   волокон);   Е=10   и   tg δ = 0,01   (при   частоте   1010   Гц).

  Карбостекловолокниты содержат наряду с угольными стеклянные, волокна, что удешевляет материал.

  Карбоволокниты  с углеродной матрицей. Коксованные  материалы получаются из обычных полимерных карбоволокнитов, подвергнутых пиролизу в инертной или восстановительной атмосфере. При температуре 800—1500°С образуются карбонизованные, при 2500-3000°С графитированные карбоволокниты. Для получения пироуглеродных материалов упрочнитель выкладывается по форме -изделия и помещается в печь, в которую пропускается газообразный углеводород (метан). При определенном режиме (1100°С и остаточном давлении 20 мм-рт. ст.) метан разлагается, и образующийся пиролитический углерод осаждается на волокнах упрочнителя, связывая их.

  Образующийся  при пиролизе связующего кокс имеет  высокую прочность сцепления с углеродным волокном. В связи с этим композиционный материал обладает высокими механическими и абляционными свойствами, стойкостью к термическому удару.

  Карбоволокнит на углеродной матрице типа КУП-ВМ: по значениям прочности и ударной вязкости в 5 —10 раз превосходит специальные графиты; при нагреве в инертной атмосфере и вакууме он сохраняет прочность до 2200°С, на воздухе окисляется при 450°С и требует защитного покрытия. Коэффициент трения одного карбоволокнита с углеродной матрицей по другому высок (0,35-0,45), а износ мал (0,7-1 мкм на торможение).

  Полимерные  карбоволокниты используют в судо- и автомобилестроении (кузова гоночных машин, шасси, гребные винты); из них изготовляют подшипники, панели отопления, спортивный инвентарь, части ЭВМ. Высокомодульные карбоволокниты применяют для изготовления деталей авиационной техники, аппаратуры для химической промышленности, в рентгеновском оборудовании и др. 

  Карбоволокниты  с углеродной матрицей применяют  для тепловой защиты, дисков авиационных тормозов, химически стойкой аппаратуры, заменяя различные типы графитов.  

     2. БОРОВОЛОКНИТЫ

   Бороволокниты представляют собой композиции из полимерного  связующего и упрочнителя — борных волокон.

   Бороволокниты отличаются высокой прочностью при  сжатии, сдвиге и срезе, низкой ползучестью, высокими твердостью и модулем упругости, тепло- и электропроводностью.

   Борное  волокно получается осаждением бора из газовой фазы на поверхность разогретой вольфрамовой проволоки. Вследствие диффузии и взаимодействия между бором и вольфрамом последний превращается в бориды вольфрама. Таким образом, наружная оболочка волокна состоит из металлического бора, сердечник — из кристаллических боридов переменного состава. Борные волокна имеют d = 90 -- 150 мкм, Ơ„ = 280 - 320 кгс/мм2, г = 0,7 - 0,8%, Е = 39000 -- 40000 кгс/мм2, выпускаются под марками БН и борофил (США). При температуре > 400°С волокна окисляются и требуют нанесения защитных покрытий (карбиды). Ячеистая микроструктура борных волокон обеспечивает высокую прочность при сдвиге на границе раздела с матрицей.

   Помимо  непрерывного борного волокна применяют  комплексные боростеклонити, в которых несколько параллельных борных волокон оплетаются стеклонитью, придающей формоустойчивость. Применение боростеклонитей. облегчает технологический процесс изготовления бороволокнитов.

   В качестве матриц для получения бороволокнитов используют модифицированные эпоксидные и полиимидные связующие. Бороволокниты КМБ-1 и КМБ-1к предназначены для длительной работы при температуре 200°С; КМБ-3 и КМБ-Зк не требуют высокого давления при переработке и могут работать при температуре не свыше 100°С; КМБ-2к работоспособен при 300°С .

   Бороволокниты обладают высокой усталостной прочностью (до 35 — 40 кгс/мм2), их свойства можно изменять за счет различной укладки упрочнителя. Бороволокниты стойки к воздействию проникающей радиации, к воде, органическим растворителям и горюче-смазочным материалам.

 3.Органоволокниты 

   Представляют  собой композиционные материалы, состоящие  из полимерного связующего и упрочнителей в виде синтетических волокон. Они устойчивы в агрессивных средах и во влажном тропическом климате; диэлектрические свойства высокие, а теплопроводность низкая.

   Органоволокниты применяют в качестве изоляционного  и конструкционного материала в электрорадиопромышленности, авиационной технике, автостроении; из них изготовляют трубы, емкости. 
 
 
 
 
 
 
 
 
 
 
 
 
 

                   РЕЗИНОВЫЕ МАТЕРИАЛЫ______________ 

 
 
 
   1. ОБЩИЕ СВЕДЕНИЯ, СОСТАВ И КЛАССИФИКАЦИЯ  РЕЗИН

   Резиной называется продукт специальной  обработки (вулканизации) смеси каучука и серы с различными добавками.

   Резина  как технический материал отличается от других материалов высокими эластическими  свойствами, которые присущи каучуку  — главному исходному компоненту резины. Она способна к очень большим  деформациям (относительное удлинение достигает 1000%), которые почти полностью обратимы. При комнатной температуре резина находится в высокоэластическом состоянии и ее эластические свойства сохраняются в широком диапазоне температур.

   Модуль  упругости лежит в пределах 0,1 — 1 кгс/мм2, т. е. он в тысячи и десятки тысяч раз .меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой); коэффициент Пуассона равен 0,4 — 0,5, тогда как для металла эта величина составляет 0,25 — 0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При комнатной температуре время релаксации может составлять-10 ~ 4 с й более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок); это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.

Информация о работе Неметаллические материалы